电致发光课件.pptx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《电致发光课件.pptx》由用户(三亚风情)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 电致发光 课件
- 资源描述:
-
1、第一节第一节 电致发光显示器(电致发光显示器(ELDELD)一、全固态的电致发光显示器一、全固态的电致发光显示器二、电致发光的分类二、电致发光的分类三、无机薄膜电致发光(器件结构及工作原理)三、无机薄膜电致发光(器件结构及工作原理)四、电致发光元件的各种构成材料四、电致发光元件的各种构成材料五、五、ELD的用途的用途六、六、TFEL器件最新进展器件最新进展七、七、 无机无机TFEL研究的一般方法研究的一般方法 1 1、电致发光的发展历程:、电致发光的发展历程: 19361936年,年,法国的法国的Destriau Destriau 发现发现ZnSZnS的电致发光现象。的电致发光现象。 1950
2、1950年,年,发明透明导电膜,开发成功分散型发明透明导电膜,开发成功分散型ELEL(第一代(第一代ELEL) 19681968年,年,分散型分散型ELEL元件可以实现直流驱动;薄膜型元件可以实现直流驱动;薄膜型ELEL可实现高亮可实现高亮度。(第二代度。(第二代ELEL)。)。 19741974年年,通过实验证实了二层绝缘膜结构的薄膜型,通过实验证实了二层绝缘膜结构的薄膜型ELEL元件可用于元件可用于电视画面显示的可能性。电视画面显示的可能性。 19831983年,年,日本开始薄膜日本开始薄膜ELDELD的批量生产。的批量生产。 目前,夏普等公司生产橙红色发光的目前,夏普等公司生产橙红色发光
3、的ELDELD;国内有许多公司在生产国内有许多公司在生产ELEL器件器件 一、全固态的电致发光显示器一、全固态的电致发光显示器 (1 1)第一阶段:)第一阶段:ZnS:MnZnS:Mn(橙黄色)单色显示器的商品化;(橙黄色)单色显示器的商品化; (2 2)第二阶段:二色(红、绿)、三色(红、绿、蓝)、多色)第二阶段:二色(红、绿)、三色(红、绿、蓝)、多色显示器的商品化;显示器的商品化; (3 3)第三阶段:全色显示器的商品化。)第三阶段:全色显示器的商品化。 2 2、电致发光显示的特征:、电致发光显示的特征: (1 1)图象显示质量高;)图象显示质量高; (2 2)受温度变化的影响小;)受温
4、度变化的影响小; (3 3)是目前唯一的全固体显示元件;)是目前唯一的全固体显示元件; (4 4)有小功耗、薄型、质轻等特点。)有小功耗、薄型、质轻等特点。 分散型分散型EL EL 交流驱动型(商品阶段)交流驱动型(商品阶段) 直流驱动型(开发阶段)直流驱动型(开发阶段) 薄膜型薄膜型EL EL 交流驱动型交流驱动型 非存储型(商品阶段)非存储型(商品阶段) 存储型(研究阶段)存储型(研究阶段) 直流型(研究阶段)直流型(研究阶段) 有机电致发光(有机电致发光(OEL) OEL) ( (商品化阶段商品化阶段) )发光层、电子传输层、发光层、电子传输层、空穴传输层构成。在低压下可以获得高亮度发光
5、,有可能实现蓝空穴传输层构成。在低压下可以获得高亮度发光,有可能实现蓝色发光。有机电致发光属于注入型色发光。有机电致发光属于注入型ELEL,更类似于,更类似于LEDLED。二、电致发光的分类二、电致发光的分类1 1、TFELTFEL器件的结构器件的结构三、无机薄膜电致发光(器件结构及工作原理)三、无机薄膜电致发光(器件结构及工作原理) 2 2、TFELTFEL器件的工作原理(器件的工作原理(碰撞激发碰撞激发) (1 1)在电场作用下,发光层与绝缘层界面能级处束缚的电子遂在电场作用下,发光层与绝缘层界面能级处束缚的电子遂穿发射至发光层;穿发射至发光层; (2 2)同时,发光层中杂质和缺陷也电离一
6、部分电子,这些电子同时,发光层中杂质和缺陷也电离一部分电子,这些电子在电场作用下被加速在电场作用下被加速; ; (3 3)当其能量增到足够大时,碰撞激发发光中心,从而实现发当其能量增到足够大时,碰撞激发发光中心,从而实现发光光; ; (4 4)电子在穿过发光层后,被另一侧的界面俘获。电子在穿过发光层后,被另一侧的界面俘获。 薄膜电致发光器件一般采用交流驱动,在交流驱动情况下,薄膜电致发光器件一般采用交流驱动,在交流驱动情况下,当外加电压反转时,上述当外加电压反转时,上述4 4个过程重复进行,实现连续发光。个过程重复进行,实现连续发光。 基板基板透 明透 明电极电极第第一一绝绝缘缘层层发光层发光
7、层第第二二绝绝缘缘层层介介电电体体层层背背面面电电极极是 否是 否实 用实 用化化应 用应 用情况情况分 散 型分 散 型交 流 电交 流 电致发光致发光玻 璃玻 璃或 柔或 柔性 塑性 塑料板料板ITOITO膜膜ZnS:Cu,ClZnS:Cu,Cl(蓝(蓝绿)绿)ZnS:Cu.Al(ZnS:Cu.Al(绿绿) )ZnS:Cu,Cl,MnZnS:Cu,Cl,Mn(黄(黄色)色)有有ALAL商 品商 品化 阶化 阶段段液 晶液 晶背 光背 光源源分 散 型分 散 型直 流 电直 流 电致发光致发光玻 璃玻 璃基板基板ITOITO膜膜ZnS:Cu,MnZnS:Cu,Mn(黄),(黄),ZnS:Tm
8、ZnS:Tm3+3+( (蓝蓝) )ZnS:TbZnS:Tb3+3+,Er,Er3+3+( (绿绿) )ZnS:NdZnS:Nd3+3+,Sm,Sm3+3+( (红红) )AlAl开 发开 发阶段阶段薄 膜 型薄 膜 型交 流 电交 流 电致发光致发光玻 璃玻 璃基板基板ITOITO膜膜有有ZnS:MnZnS:Mn薄薄膜膜有有AlAl商品化商品化阶段阶段精细精细矩阵矩阵显示显示薄 膜 型薄 膜 型直 流 电直 流 电致发光致发光玻 璃玻 璃基板基板ITOITO膜膜ZnS:MnZnS:Mn薄薄膜膜AlAl研 究研 究阶段阶段有机有机电致电致发光发光玻璃玻璃或柔或柔性塑性塑料板料板ITOITO膜膜
9、空空穴穴输输运运层层有 机 薄 膜有 机 薄 膜(AlqAlq3 3)电电子子输输运运层层M gM gAgAg商 品商 品化化手机、手机、显示显示器等器等 四、电致发光元件的各种构成材料四、电致发光元件的各种构成材料 1 1、基板材料、基板材料一般采用玻璃一般采用玻璃 (1 1)在可见光区域透明,热膨胀系数与积层材料一致)在可见光区域透明,热膨胀系数与积层材料一致 (2 2)能承受)能承受ELEL的退火温度(的退火温度(500500600600) (3 3)碱金属离子含量尽量低,确保元件的长期可靠性。)碱金属离子含量尽量低,确保元件的长期可靠性。 2 2、发光层材料、发光层材料 (1 1)薄膜
10、型)薄膜型ELEL的发光材料:选择合适的发光中心;能的发光材料:选择合适的发光中心;能承受承受10105 5V/cmV/cm左右的强电场。左右的强电场。 母体母体:ZnSZnS、CaSCaS、SrSSrS等半导体材料。等半导体材料。 发光中心:发光中心:采用属于定域能级的元素,除采用属于定域能级的元素,除MnMn外,还有许外,还有许多稀土元素。多稀土元素。 红色:红色:CaS:EuCaS:Eu,ZnS:Sm,FZnS:Sm,F,附加彩色滤光器的,附加彩色滤光器的SrS:Ce SrS:Ce ; 绿色:绿色:ZnS:Tb,FZnS:Tb,F; 蓝色:蓝色:CaGaCaGa2 2S:CeS:Ce或附
11、加彩色滤光器的或附加彩色滤光器的SrS:CeSrS:Ce (2 2)分散型交流)分散型交流ELEL发光层材料发光层材料:主要采用与薄膜型相:主要采用与薄膜型相同的同的ZnSZnS,选择合适的发光中心。,选择合适的发光中心。 发光层的形成方法:发光层的形成方法: 物理气相沉积(物理气相沉积(PVDPVD)电子束蒸发(电子束蒸发(EBEB)和多源蒸和多源蒸发(发(MSDMSD)以及溅射镀膜等)以及溅射镀膜等 化学气相沉积(化学气相沉积(CVDCVD)原子层外延(原子层外延(ALEALE)有机金属有机金属气相沉积(气相沉积(MOCVDMOCVD),氢化物输送减压法(),氢化物输送减压法(HTHTCV
12、DCVD) 3 3、电极材料、电极材料 透明电极(透明电极(ITOITO,CdSnOCdSnO3 3,ZnOZnO); ;背电极背电极AlAl。 EBEB蒸发、电阻加热蒸发、溅射镀膜等物理方法;喷涂法、蒸发、电阻加热蒸发、溅射镀膜等物理方法;喷涂法、CVDCVD等化学方法。等化学方法。 目前:目前:溅射镀膜法,特别是磁控溅射用的最多。溅射镀膜法,特别是磁控溅射用的最多。 4 4、绝缘层材料、绝缘层材料 绝缘耐压(使绝缘破坏的电场强度)高,针孔等缺陷少,绝缘耐压(使绝缘破坏的电场强度)高,针孔等缺陷少,与发光层附着牢固。与发光层附着牢固。 (1 1)非晶态氧化物或氮化物:)非晶态氧化物或氮化物:
13、(Y Y2 2O O3 3,AlAl2 2O O3 3,TaTa2 2O O5 5,SiOSiO2 2,SiSi3 3N N4 4) (2 2)铁电体:)铁电体:BaTiOBaTiO3 3,PbTiOPbTiO3 3 溅射镀膜法是主要成膜方式。溅射镀膜法是主要成膜方式。 一般一般采用电子束蒸发等真空镀膜法;采用电子束蒸发等真空镀膜法; 难于难于真空蒸发的材料采用溅射镀膜法;真空蒸发的材料采用溅射镀膜法; 对均匀性对均匀性要求高的采用原子层外延法。要求高的采用原子层外延法。 电子束蒸发等真空镀膜法电子束蒸发等真空镀膜法 电子蒸发设备的核心是偏转电子枪,偏转电子枪是利用电子蒸发设备的核心是偏转电子
14、枪,偏转电子枪是利用具有一定速度的带点粒子在均匀磁场中受力做圆周运动这一原理具有一定速度的带点粒子在均匀磁场中受力做圆周运动这一原理设计而成的。其结构由两部分组成:一是电子枪用来射高速运动设计而成的。其结构由两部分组成:一是电子枪用来射高速运动的电子;二是使电子做圆周运动的均匀磁场。的电子;二是使电子做圆周运动的均匀磁场。 电子束蒸发对源材料的要求电子束蒸发对源材料的要求熔点要高熔点要高饱和蒸汽压要低饱和蒸汽压要低 化学性能要稳定化学性能要稳定蒸发材料对加热材料的蒸发材料对加热材料的“湿润性湿润性” 离子溅射镀膜法离子溅射镀膜法 在低真空在低真空(0.1(0.10.01 0.01 乇乇) )状
15、态下,在阳极与阴状态下,在阳极与阴极两个电极之间加上几百至上千伏的直流电压时,电极极两个电极之间加上几百至上千伏的直流电压时,电极之间会产生辉光放电。在放电的过程中,气体分子被电之间会产生辉光放电。在放电的过程中,气体分子被电离成带正电的阳离子和带负电的电子,并在电场的作用离成带正电的阳离子和带负电的电子,并在电场的作用下,阳离子被加速跑向阴极,而电子被加速跑向阳极。下,阳离子被加速跑向阴极,而电子被加速跑向阳极。如果阴极用金属作为电极如果阴极用金属作为电极( (常称靶极常称靶极) ),那么在阳离子冲,那么在阳离子冲击其表面时,就会将其表面的金属粒子打出,这种现象击其表面时,就会将其表面的金属
16、粒子打出,这种现象称为称为溅射溅射。 此时被溅射的金属粒子是中性,即不受电场的作用,而此时被溅射的金属粒子是中性,即不受电场的作用,而靠重力作用下落。如果将样品置于下面,被溅射的金属靠重力作用下落。如果将样品置于下面,被溅射的金属粒子就会落到样品表面,形成一层金属膜,用这种方法粒子就会落到样品表面,形成一层金属膜,用这种方法给样品表面镀膜,称为给样品表面镀膜,称为离子溅射镀膜法。离子溅射镀膜法。 特点:特点: 1. 1. 低电压冷溅射低电压冷溅射 2. 2. 全自动操作,可控制独立的真空泵全自动操作,可控制独立的真空泵 3. 3. 可预设沉积厚度,均匀厚度沉积,全自动控制,膜可预设沉积厚度,均
17、匀厚度沉积,全自动控制,膜厚度重复性好厚度重复性好 、数字及符号显示、数字及符号显示 、图形显示、图形显示薄膜电致发光显示器的结构图薄膜电致发光显示器的结构图五、五、ELDELD的用途的用途 、彩色显示、彩色显示 (1 1)ELEL积层型积层型,将多色发光层简单的堆积;,将多色发光层简单的堆积; (2 2)ELEL平面布置型平面布置型,利用光刻工艺将三基色发光层在平面上布,利用光刻工艺将三基色发光层在平面上布置;置; (3 3)白色白色ELEL与彩色滤光器积层型与彩色滤光器积层型,使发光波长广布于可见光范,使发光波长广布于可见光范围内的白色发光层与彩色滤光器相沉积。围内的白色发光层与彩色滤光器
18、相沉积。 (4 4)二层基板型二层基板型,是积层型与平面布置型相组合。,是积层型与平面布置型相组合。 目前目前,ELEL平面布置型在制作、结构、驱动电路等方面容易实现;平面布置型在制作、结构、驱动电路等方面容易实现;对白色发光层与彩色滤光器沉积的研制更多些。对白色发光层与彩色滤光器沉积的研制更多些。 4 4、LCDLCD背照光源背照光源 夹层结构中的绝缘层被一系列的电子加速层所代替,夹层结构中的绝缘层被一系列的电子加速层所代替,就是我们所说的分层优化结构。就是我们所说的分层优化结构。 在这种结构中,从电极处发射的电子,在这些加速在这种结构中,从电极处发射的电子,在这些加速层中被多次加速,获得了
19、足够高的能量,然后进入发光层中被多次加速,获得了足够高的能量,然后进入发光层,碰撞激发发光中心,实现发光。这种加速过程和发层,碰撞激发发光中心,实现发光。这种加速过程和发光过程的分离,使我们能够独立地对各层进行分层优化。光过程的分离,使我们能够独立地对各层进行分层优化。这无论是对电子能量、发光亮度,还是发光效率的提高这无论是对电子能量、发光亮度,还是发光效率的提高都具有重要意义。都具有重要意义。六、六、TFELTFEL器件最新进展器件最新进展 1 1 薄膜的制备薄膜的制备 2 2 器件性能的测量器件性能的测量 一般说来,我们做成的器件都需要对其器件性能一般说来,我们做成的器件都需要对其器件性能
20、进行检测。这些性能可以通过激发光谱、发射光谱、吸进行检测。这些性能可以通过激发光谱、发射光谱、吸收光谱、亮度电压曲线、传导电流等反映出来,它们分收光谱、亮度电压曲线、传导电流等反映出来,它们分别反映了器件不同方面的性能。别反映了器件不同方面的性能。 3 3 结构和成份分析结构和成份分析七七 无机无机TFELTFEL研究的一般方法研究的一般方法第二节第二节 有机电致发光有机电致发光一、一、OLEDOLED发展历程发展历程二、二、OLEDOLED的分类的分类三、小分子三、小分子OLEDOLED的结构、原理与材料的结构、原理与材料四、四、PELPEL结构、机理、材料结构、机理、材料五、五、OLEDO
21、LED的一般研究方法的一般研究方法六彩色显示板的方法六彩色显示板的方法七、影响器件失效和寿命的因素和解决方法七、影响器件失效和寿命的因素和解决方法八、八、 OLEDOLED的发展现状及存在的主要问题应用和前景的发展现状及存在的主要问题应用和前景19361936年,年,DestriauDestriau将有机荧光化合物分散在聚合物中制成薄膜,得到最早的将有机荧光化合物分散在聚合物中制成薄膜,得到最早的电致发光器件。电致发光器件。2020 世纪世纪5050年代,年代,人们就开始用有机材料制作电致发光器件的探索,人们就开始用有机材料制作电致发光器件的探索,A.A. BernanoseBernanose
22、等人在蒽单晶片的两侧加上等人在蒽单晶片的两侧加上400V400V的直流电压观测到发光现象,的直流电压观测到发光现象,单晶厚单晶厚10mm10mm20mm20mm,所以驱动电压较高。,所以驱动电压较高。19631963年,年,M.M. PopePope等人也获得了蒽单晶的电致发光。等人也获得了蒽单晶的电致发光。7070年代,年代,宾夕法尼亚大学的宾夕法尼亚大学的HeegerHeeger探索了合成金属。探索了合成金属。19871987年,年,KodakKodak公司的邓青云首次研制出具有实用价值的低驱动电压(公司的邓青云首次研制出具有实用价值的低驱动电压(10V1000cd/m1000cd/m2
23、2)OLEDOLED器件(器件(AlqAlq作为发光层)。作为发光层)。19901990年年,BurroughesBurroughes及其合作者研究成功第一个高分子及其合作者研究成功第一个高分子ELEL(PLEDPLED)(PPV(PPV作为作为发光层发光层) ),更为有机电致发光显示器件实用化进一步奠定了基础。,更为有机电致发光显示器件实用化进一步奠定了基础。一、一、OLED发展历程发展历程19971997年,年,单色有机电致发光显示器件首先在日本产品化,单色有机电致发光显示器件首先在日本产品化,19991999年,年,日本先锋公司率先推出了为汽车音视通信设备而设计的多彩有机电日本先锋公司率
24、先推出了为汽车音视通信设备而设计的多彩有机电致发光显示器面板,并开始量产,致发光显示器面板,并开始量产,同年同年9 9月,月,使用了先锋公司多色有机电致发光显示器件的摩托罗拉手机大批量使用了先锋公司多色有机电致发光显示器件的摩托罗拉手机大批量上市。上市。近年来近年来,OELOEL的突破性进展,并引起产业界的高度重视,在世界范围内,已有的突破性进展,并引起产业界的高度重视,在世界范围内,已有9090多家公司在开发多家公司在开发OELOEL,而且每个月都有新公司加入。,而且每个月都有新公司加入。国内公司有国内公司有:京东方科技集团股份有限公司、维信诺公司(南风化工集团股:京东方科技集团股份有限公司
25、、维信诺公司(南风化工集团股份有限公司是清华大学企业集团、清华创业投资公司、咸阳彩虹集团等在北份有限公司是清华大学企业集团、清华创业投资公司、咸阳彩虹集团等在北京注册成立维信诺科技有限公司)、清华大学与彩虹集团合作已在建立京注册成立维信诺科技有限公司)、清华大学与彩虹集团合作已在建立1 1条小条小试实验线、廊坊市锡丰化工有限公司、上海大学、吉林大学与有关公司合作试实验线、廊坊市锡丰化工有限公司、上海大学、吉林大学与有关公司合作开发的谈判也在积极进行之中等。开发的谈判也在积极进行之中等。这一切都表明,这一切都表明,OLEDOLED技术正在逐步实用化,显示技术又将面临新的革命。技术正在逐步实用化,
展开阅读全文