2022年高考文科数学全国乙卷及答案.docx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《2022年高考文科数学全国乙卷及答案.docx》由用户(副主任)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 年高 文科 数学 全国 答案 下载 _历年真题_高考专区_数学_高中
- 资源描述:
-
1、2022年普通高等学校招生全国统一考试(全国乙卷)文科数学注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号框涂黑。如需改动,用橡皮擦干净后,再选涂其它答案标号框,回答非选择题时,将答案写在答题卡上。写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1集合,则( )A B C D2设,其中为实数,则( )A B C D3已知向量,则( )A2 B3 C4 D54分别统计了甲、乙两位同学16周的各周课
2、外体育运动时长(单位:h),得如下茎叶图:则下列结论中错误的是( )A甲同学周课外体育运动时长的样本中位数为7.4B乙同学周课外体育运动时长的样本平均数大于8C甲同学周课外体育运动时长大于8的概率的估计值大于0.4D乙同学周课外体育运动时长大于8的概率的估计值大于0.65若x,y满足约束条件则的最大值是( )A B4 C8 D126设F为抛物线的焦点,点A在C上,点,若,则( )A2 B C3 D7执行右边的程序框图,输出的( )A3 B4 C5 D68右图是下列四个函数中的某个函数在区间的大致图像,则该函数是( )A B C D9在正方体中,分别为的中点,则( )A平面平面 B平面平面C平面
3、平面 D平面平面10已知等比数列的前3项和为168,则( )A14 B12 C6 D311函数在区间的最小值、最大值分别为( )A B C D12已知球O的半径为1,四棱锥的顶点为O,底面的四个顶点均在球O的球面上,则当该四棱锥的体积最大时,其高为( )A B C D二、填空题:本题共4小题,每小题5分,共20分13记为等差数列的前n项和若,则公差_14从甲、乙等5名同学中随机选3名参加社区服务工作,则甲、乙都入选的概率为_15过四点中的三点的一个圆的方程为_16若是奇函数,则_,_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。第1721题为必考题,每个试题考生都必须作答。第2
4、2、23题为选考题,考生根据要求作答。(一)必考题:共60分17(12分)记的内角A,B,C的对边分别为a,b,c已知(1)若,求C;(2)证明:18(12分)如图,四面体中,E为AC的中点(1)证明:平面平面ACD;(2)设,点F在BD上,当的面积最小时,求三棱锥的体积19(12分)某地经过多年的环境治理,已将荒山改造成了绿水青山为估计一林区某种树木的总材积量,随机选取了10棵这种树木,测量每棵树的根部横截面积(单位:)和材积量(单位:),得到如下数据:样本号i12345678910总和根部横截面积0.040.060.040.080.080.050.050.070.070.060.6材积量0
5、.250.400.220.540.510.340.360.460.420.403.9并计算得,(1)估计该林区这种树木平均一棵的根部横截面积与平均一棵的材积量;(2)求该林区这种树木的根部横截面积与材积量的样本相关系数(精确到0.01);(3)现测量了该林区所有这种树木的根部横截面积,并得到所有这种树木的根部横截面积总和为已知树木的材积量与其根部横截面积近似成正比利用以上数据给出该林区这种树木的总材积量的估计值附:相关系数,20(12分)己知函数(1)当时,求的最大值;(2)若恰有一个零点,求a的取值范围21(12分)已知椭圆E的中心为坐标原点,对称轴为x轴、y轴,且过两点(1)求E的方程;(
6、2)设过点的直线交E于M,N两点,过M且平行于x轴的直线与线段交于点T,点H满足,证明:直线过定点(二)选考题:共10分请考生在第22、23题中选定一题作答,并用2B铅笔在答题卡上将所选题目对应的题号方框涂黑按所涂题号进行评分,不涂、多涂均按所答第一题评分;多答按所答第一题评分。22选修44:坐标系与参数方程(10分)在直角坐标系中,曲线C的参数方程(t为参数)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,已知直线l的极坐标方程为(1)写出l的直角坐标方程;(2)若l与C有公共点,求m的取值范围23选修45:不等式选讲(10分)已知a,b,c都是正数,且,证明:(1);(2)2022年普通高
7、等学校招生全国统一考试(全国乙卷)文科数学注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2回答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号框涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号框,回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3考试结束后,将本试卷和答题卡一并交回.一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 集合,则( )A. B. C. D. 【答案】A【解析】【分析】根据集合的交集运算即可解出【详解】因为,所以故选:A.2. 设,其中为实数,则( )A. B. C
8、. D. 【答案】A【解析】【分析】根据复数代数形式的运算法则以及复数相等的概念即可解出【详解】因为R,所以,解得:故选:A.3. 已知向量,则( )A. 2B. 3C. 4D. 5【答案】D【解析】【分析】先求得,然后求得.【详解】因为,所以.故选:D4. 分别统计了甲、乙两位同学16周的各周课外体育运动时长(单位:h),得如下茎叶图:则下列结论中错误的是( )A. 甲同学周课外体育运动时长的样本中位数为7.4B. 乙同学周课外体育运动时长的样本平均数大于8C. 甲同学周课外体育运动时长大于8的概率的估计值大于0.4D. 乙同学周课外体育运动时长大于8的概率的估计值大于0.6【答案】C【解析
9、】【分析】结合茎叶图、中位数、平均数、古典概型等知识确定正确答案.【详解】对于A选项,甲同学周课外体育运动时长的样本中位数为,A选项结论正确.对于B选项,乙同学课外体育运动时长的样本平均数为:,B选项结论正确.对于C选项,甲同学周课外体育运动时长大于的概率的估计值,C选项结论错误.对于D选项,乙同学周课外体育运动时长大于的概率的估计值,D选项结论正确.故选:C5. 若x,y满足约束条件则的最大值是( )A. B. 4C. 8D. 12【答案】C【解析】【分析】作出可行域,数形结合即可得解.【详解】由题意作出可行域,如图阴影部分所示,转化目标函数为,上下平移直线,可得当直线过点时,直线截距最小,
10、z最大,所以.故选:C.6. 设F为抛物线的焦点,点A在C上,点,若,则( )A. 2B. C. 3D. 【答案】B【解析】【分析】根据抛物线上的点到焦点和准线的距离相等,从而求得点的横坐标,进而求得点坐标,即可得到答案.【详解】由题意得,则,即点到准线的距离为2,所以点的横坐标为,不妨设点在轴上方,代入得,所以.故选:B7. 执行下边的程序框图,输出的( )A. 3B. 4C. 5D. 6【答案】B【解析】【分析】根据框图循环计算即可.【详解】执行第一次循环,;执行第二次循环,;执行第三次循环,此时输出.故选:B8. 如图是下列四个函数中的某个函数在区间的大致图像,则该函数是( )A. B.
11、 C. D. 【答案】A【解析】【分析】由函数图像的特征结合函数的性质逐项排除即可得解.【详解】设,则,故排除B;设,当时,所以,故排除C;设,则,故排除D.故选:A.9. 在正方体中,E,F分别为的中点,则( )A. 平面平面B. 平面平面C. 平面平面D. 平面平面【答案】A【解析】【分析】证明平面,即可判断A;如图,以点为原点,建立空间直角坐标系,设,分别求出平面,的法向量,根据法向量的位置关系,即可判断BCD.【详解】解:在正方体中,且平面,又平面,所以,因为分别为的中点,所以,所以,又,所以平面,又平面,所以平面平面,故A正确;如图,以点为原点,建立空间直角坐标系,设,则,则,设平面
展开阅读全文