多元线性回归模型-PPT课件.pptx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《多元线性回归模型-PPT课件.pptx》由用户(三亚风情)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 多元 线性 回归 模型 PPT 课件
- 资源描述:
-
1、第三章第三章 经典单方程计量经济学模型:经典单方程计量经济学模型:多元线性回归模型多元线性回归模型Multiple Linear Regression Model1一元回归分析一元回归分析一一 总体回归函数总体回归函数 线性总体回归函数线性总体回归函数:二二 总体回归模型或总体回归函数的随机设定形式总体回归模型或总体回归函数的随机设定形式三三 样本回归函数样本回归函数四四 样本回归样本回归模型模型或样本回归函数或样本回归函数的随机设定形式的随机设定形式2iiiiieXYY10回归分析的主要目的:回归分析的主要目的:根据样本回归函数SRF,估计总体回归函数PRF。3iiiiieXeYY10iii
2、iiXXYEY10)|(2.3 2.3 一元线性回归模型的参数估计一元线性回归模型的参数估计一、参数的普通最小二乘估计(一、参数的普通最小二乘估计(OLSOLS) 二、参数估计的最大似然法二、参数估计的最大似然法(ML) (ML) 三、参数估计的距估计法三、参数估计的距估计法42212220)()(iiiiiiiiiiiiiXXnXYXYnXXnXYXYXXYxyxiii10212.3 2.3 一元线性回归模型的参数估计一元线性回归模型的参数估计52 2、无无偏偏性性,即估计量0、1的均值(期望)等于总体回归参数真值0与1 四、最小二乘估计量的性质四、最小二乘估计量的性质 3 3、有有 效效性
3、性(最最 小小方方差差性性 ) , 即在所有线性无偏估计量中,最小二乘估计量0、1具有最小方差。 一元线性回归模型的统计检验一元线性回归模型的统计检验 一、拟合优度检验一、拟合优度检验 二、变量的显著性检验二、变量的显著性检验 F F检验、检验、t t检验、检验、Z Z检验检验 三、参数的置信区间三、参数的置信区间 6TSSRSSTSSESSR12多元线性回归多元线性回归模型内容模型内容 多元线性回归模型概述多元线性回归模型概述 多元线性回归模型的参数估计多元线性回归模型的参数估计 多元线性回归模型的统计检验多元线性回归模型的统计检验 案例案例73.1 3.1 多元线性回归模型概述多元线性回归
4、模型概述( (Regression Analysis) )一、多元线性回归模型一、多元线性回归模型二、多元线性回归模型的基本假设二、多元线性回归模型的基本假设8一、多元线性回归模型一、多元线性回归模型9总体回归模型总体回归模型(i=1,2,n) 总体回归模型总体回归模型:k为解释变量的为解释变量的数目数目;习惯习惯上,把常数项看成为虚变量的系数,该虚变量的样本观测值上,把常数项看成为虚变量的系数,该虚变量的样本观测值始终取始终取1 1。于是,模型中解释变量的数目为。于是,模型中解释变量的数目为(k+1+1)。; j j称为称为回归参数回归参数(regression coefficient)。)
5、。10总体回归模型还可以写成:总体回归模型还可以写成: 总体回归函数:总体回归函数:描述在给定解释变量描述在给定解释变量Xi条件下条件下被解释变量被解释变量Yi的条件均值。的条件均值。iki22i110iki2i1),|(XXXXXXYEki j也被称为也被称为偏回归系数偏回归系数(partial regression coefficients),表示在其,表示在其他解释变量保持不变的情况下,他解释变量保持不变的情况下,Xj每变化每变化1个单位时,个单位时,Y的均值的均值E(Y)的变化。的变化。或者说或者说j给出了给出了Xj的单位变化对的单位变化对Y均值的均值的“直接直接”或或“净净”(不(不
6、含其他变量)影响。含其他变量)影响。总体回归函总体回归函数数11总体回归模型的矩阵表示总体回归模型的矩阵表示XY121nnYYYY Y1)1(210kk121nn12nkkknXXXXXXXXX212n122211211111X样本回归函数与样本回归模型样本回归函数与样本回归模型 从一次抽样中获得的总体回归函数的近似,称为从一次抽样中获得的总体回归函数的近似,称为样样本回归函数(本回归函数(sample regression function)。 样本回归函数的随机形式,称为样本回归函数的随机形式,称为样本回归模型样本回归模型(sample regression model)。 kikiiii
7、XXXY22110ikikiiiieXXXY2211013样本回归函数的矩阵表示样本回归函数的矩阵表示XYeXYk10neee21e14二、多元线性回归模型的基本假设二、多元线性回归模型的基本假设151 1、关于模型关系的假设、关于模型关系的假设( (与一元回归模型基本相同)与一元回归模型基本相同) 假设假设1. 回归模型设定是正确的。回归模型设定是正确的。 假设假设2. 解释变量具有变异性解释变量具有变异性 假设假设3. 各自变量之间不存在严格线性相关性(无完全各自变量之间不存在严格线性相关性(无完全多重共线性)多重共线性) 假设假设4. 随机干扰项具有条件零均值性随机干扰项具有条件零均值性
8、 假设假设5. 随机干扰项具有条件同方差及不序列相关性随机干扰项具有条件同方差及不序列相关性 假设假设6. 随机干扰项满足正态分布随机干扰项满足正态分布163.2 3.2 多元线性回归模型的估计多元线性回归模型的估计 一、普通最小二乘估计一、普通最小二乘估计 二、二、最大似然估计最大似然估计 三、矩估计三、矩估计 四、参数估计量的性质四、参数估计量的性质 五、样本容量问题五、样本容量问题六、估计实例六、估计实例 17说说 明明估计方法:估计方法: 三大类方法:三大类方法:OLS、ML或者或者MM 在经典模型中多应用在经典模型中多应用OLS 在非经典模型中多应用在非经典模型中多应用ML或者或者M
9、M18一、普通最小二乘估计一、普通最小二乘估计(OLS)(OLS)191 1、普通最小二乘估计、普通最小二乘估计 最小二乘原理:最小二乘原理:根据被解释变量的所有观测值根据被解释变量的所有观测值与估计值之差的平方和最小的原则求得参数估与估计值之差的平方和最小的原则求得参数估计量。计量。20kjniXYjii,2, 1 ,0,2, 1),(KikiiiiXXXY221100000210QQQQk2112)(niiiniiYYeQ2122110)(nikikiiiXXXY已知已知假定假定 步骤:步骤:QMin21kiikikikiiiiikikiiiiiikikiiikikiiXYXXXXXYXX
10、XXXYXXXXYXXX)()()()(221102222110112211022110kjj,2,1 ,0,22正规方程组正规方程组的的矩阵形式矩阵形式nknkknkkiikikikiiiikiiYYYXXXXXXXXXXXXXXXXn212111211102112111111YXX)X(YXXX1)(条件?条件?23 OLSOLS估计的矩阵表示估计的矩阵表示 0)()(XYXY0)(XXXYYXYY0XXYXYXXX1)(XXYX)()(12XYXYeeniieQ242 2、正规方程组的另一种表达、正规方程组的另一种表达XXYXXXeXXX0eX 001,2,iiij iieX ejk25
11、3 3、随机误差项、随机误差项 的方差的方差 2 2的的无偏估计无偏估计 XYeMXXXXIXXXXXXXXXX)()()()(111e e M M MM为等幂矩阵为等幂矩阵26)1()()()()(212121kntrtrtrEEXXXXIXXXXIXXXXIee1)(2knEee12knee27二、最大似然估计二、最大似然估计281 1、最大似然法、最大似然法 最大似然法最大似然法( (Maximum Likelihood,ML),也称,也称最大或然法最大或然法,是不同于最小二乘法的另一种参,是不同于最小二乘法的另一种参数估计方法,是从最大或然原理出发发展起来数估计方法,是从最大或然原理出
12、发发展起来的其它估计方法的基础。的其它估计方法的基础。 基本原理:基本原理:当从模型总体随机抽取当从模型总体随机抽取n组样本观组样本观测值后,最合理的参数估计量应该使得从模型测值后,最合理的参数估计量应该使得从模型中抽取该中抽取该n组样本观测值的概率最大。组样本观测值的概率最大。 ML必须已知随机项的分布。必须已知随机项的分布。292 2、估计步骤、估计步骤: :以一元模型为例以一元模型为例),(210iiXNY2102)(2121)(iiXYieYP),(),(21210nYYYPL 21022)(21)2(1iinXYneYi的分布Yi的概率函数 Y的所有样本观测值的联合概率似然函数 30
13、2102*)(21)2ln()ln(iiXYnLL0)(0)(21012100iiiiXYXY2212220)()(iiiiiiiiiiiiiXXnXYXYnXXnXYXYX对数似然函数 对数似然函数极大化的一阶条件结构参数的ML估计量310)(210212*222iinXYLneXYniii22102)(1分布参数的ML估计量323 3、似然函数、似然函数 ikikiiiXXXY 22110)()(21)(212122222211022)2(1)2(1),(),(XYXYeeYYYPLnXXXYnnnkikiiin2(,)iYNiX 2(0,)iN334 4、MLML估计量估计量 由对数似然
14、函数求极大,得到参数估计量由对数似然函数求极大,得到参数估计量* 2( )1( 2)() ()2MaxLLn LnLn YXYX() ()MinYXYXYXXX1)(结果与参数的结果与参数的OLSOLS估计相同估计相同34 分布参数估计结果与分布参数估计结果与OLS不同不同22() ()iMLennYXYX2211iOLSenknke e35 注意:注意: ML估计必须已知估计必须已知Y的分布。的分布。 只有在正态分布时只有在正态分布时ML和和OLS的结构参数估计结果的结构参数估计结果相同。相同。 如果如果Y不服从正态分布,不能采用不服从正态分布,不能采用OLS。例如:选。例如:选择性样本模型
15、、计数数据模型等。择性样本模型、计数数据模型等。36三、矩估计三、矩估计Moment Method, MM371、参数的矩估计、参数的矩估计 参数的矩估计就是用样本矩去估计总体矩。参数的矩估计就是用样本矩去估计总体矩。 用样本的一阶原点矩作为期望的估计量。用样本的一阶原点矩作为期望的估计量。 用样本的二阶中心矩作为方差的估计量。用样本的二阶中心矩作为方差的估计量。 从样本观测值计算样本一阶(原点)矩和二阶从样本观测值计算样本一阶(原点)矩和二阶(原点)矩,然后去估计总体一阶矩和总体二阶(原点)矩,然后去估计总体一阶矩和总体二阶矩,再进一步计算总体参数(期望和方差)的估矩,再进一步计算总体参数(
16、期望和方差)的估计量。计量。 38niiniiynXynX12)2(1) 1 (11样本的一阶样本的一阶矩和二阶矩矩和二阶矩 niiynXYEM1) 1 () 1 (1)(niiynXYEM12)2(2)2(1)(总体一阶矩和总体总体一阶矩和总体二阶矩的估计量二阶矩的估计量 ) 1 () 1 ()(XYEM2(2)(1)2(2)(1)2()()MMXX总体参数总体参数(期望和(期望和方差)的方差)的估计量估计量 392 2、多元线性、多元线性计量经济学模型的矩估计计量经济学模型的矩估计 如果模型的设定是正确如果模型的设定是正确,则存在一些为,则存在一些为0的条件矩。的条件矩。矩估计的基本思想是
17、利用矩条件估计模型参数。矩估计的基本思想是利用矩条件估计模型参数。ikikiiiXXXY 22110ni, 1100,1,2,njiiiXjk0111()0,0,1,2,njiiikkiiXYXXjk一组矩条件,等同于一组矩条件,等同于OLS估计的正规方程组。估计的正规方程组。40四、参数估计量的性质四、参数估计量的性质41说明说明 在满足基本假设的情况下,多元线性模型结构在满足基本假设的情况下,多元线性模型结构参数参数 的的普通最小二乘估计普通最小二乘估计、最大或然估计最大或然估计及及矩估计矩估计具有具有线性性线性性、无偏性无偏性、有效性有效性。 同时,随着样本容量增加,参数估计量具有同时,
18、随着样本容量增加,参数估计量具有渐渐近无偏性、渐近有效性、一致性近无偏性、渐近有效性、一致性。 利用矩阵表达可以很方便地证明利用矩阵表达可以很方便地证明, ,注意证明过注意证明过程中利用的基本假设。程中利用的基本假设。421、无偏性、无偏性这里利用了假设这里利用了假设: : E(X )=0XXXXXXXYXXX11)()()()()()(1EEEE432、有效性(最小方差性)、有效性(最小方差性)I2)(E44五、样本容量问题五、样本容量问题451 1、最小样本容量最小样本容量 所谓所谓“最小样本容量最小样本容量”,即从最小二乘原理和,即从最小二乘原理和最大或然原理出发,欲得到参数估计量,不管
19、其最大或然原理出发,欲得到参数估计量,不管其质量如何,所要求的样本容量的下限。质量如何,所要求的样本容量的下限。 样本最小容量必须不少于模型中解释变量的样本最小容量必须不少于模型中解释变量的数目(包括常数项)数目(包括常数项),即 n k+1462 2、满足基本要求的样本容量、满足基本要求的样本容量 从统计检验的角度从统计检验的角度: n30 时,Z检验才能应用; n-k8时, t分布较为稳定。 一般经验认为一般经验认为: 当n30或者至少n3(k+1)时,才能说满足模型估计的基本要求。 模型的良好性质只有在大样本下才能得到理模型的良好性质只有在大样本下才能得到理论上的证明。论上的证明。47六
20、、例题六、例题48地区城镇居民消费模型地区城镇居民消费模型 被解释变量:地区城镇居民人均消费被解释变量:地区城镇居民人均消费Y 解释变量:解释变量: 地区城镇居民人均可支配收入地区城镇居民人均可支配收入X1 前一年地区城镇居民人均消费前一年地区城镇居民人均消费X2 样本:样本:2006年,年,31个地区个地区49数据数据地区 2006年消费支出 Y 2006年可支配收入 X1 2005年消费支出 X2 地区 2006年消费支出 Y 2006年可支配收入 X1 2005年消费支出 X2 北 京 14825.4 19977.5 13244.2 湖 北 7397.3 9802.7 6736.6 天
21、津 10548.1 14283.1 9653.3 湖 南 8169.3 10504.7 7505.0 河 北 7343.5 10304.6 6699.7 广 东 12432.2 16015.6 11809.9 山 西 7170.9 10027.7 6342.6 广 西 6792.0 9898.8 7032.8 内蒙古 7666.6 10358.0 6928.6 海 南 7126.8 9395.1 5928.8 辽 宁 7987.5 10369.6 7369.3 重 庆 9398.7 11569.7 8623.3 吉 林 7352.6 9775.1 6794.7 四 川 7524.8 9350.
展开阅读全文