工业机器人-运动学课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《工业机器人-运动学课件.ppt》由用户(三亚风情)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 工业 机器人 运动学 课件
- 资源描述:
-
1、第第3 3章章 机器人运动学机器人运动学3.1 3.1 坐标变换坐标变换3.2 3.2 运动学方程运动学方程 习题习题第第3 3章章 机器人运动学机器人运动学运动学研究的问题运动学研究的问题: 手在空间的运动手在空间的运动与与各个各个关节的运动关节的运动之间的关系。之间的关系。正问题正问题:已知关节运动,求:已知关节运动,求 手的运动。手的运动。逆问题逆问题:已知手的运动,求:已知手的运动,求 关节运动。关节运动。第第3 3章章 机器人运动学机器人运动学数学模型数学模型: 手的运动手的运动位姿变化位姿变化位姿矩阵位姿矩阵M 关节运动关节运动参数变化参数变化关节变量关节变量qi,i=1,n运动学
2、方程运动学方程: M=f(qi), i=1,n正问题正问题:已知:已知qi,求,求M。逆问题逆问题:已知:已知M,求,求qi。第第3 3章章 机器人运动学机器人运动学预备知识预备知识、机器人位姿的表示、机器人位姿的表示、机器人的坐标系、机器人的坐标系第第3 3章章 机器人运动学机器人运动学、机器人位姿的表示、机器人位姿的表示机器人的位姿主要是指机器人手部在空间的位置机器人的位姿主要是指机器人手部在空间的位置和姿态,有时也会用到其它各个活动杆件在空间的位和姿态,有时也会用到其它各个活动杆件在空间的位置和姿态。置和姿态。 第第3 3章章 机器人运动学机器人运动学、机器人位姿的表示、机器人位姿的表示
3、位置可以用一个位置可以用一个3 31 1的位置矩阵来描述。的位置矩阵来描述。 zyxppppzyx(,)第第3 3章章 机器人运动学机器人运动学、机器人位姿的表示、机器人位姿的表示姿态可以用坐标系姿态可以用坐标系三个坐标轴两两夹角的三个坐标轴两两夹角的余弦值组成余弦值组成3 33 3的姿态的姿态矩阵来描述。矩阵来描述。 (,)hhhh),cos(),cos(),cos(),cos(),cos(),cos(),cos(),cos(),cos(hhhhhhhhhzzyzxzzyyyxyzxyxxxR第第3 3章章 机器人运动学机器人运动学、机器人位姿的表示、机器人位姿的表示 例:右图所示两坐例:右
4、图所示两坐标系的姿态为:标系的姿态为:0000111110000101001R第第3 3章章 机器人运动学机器人运动学2 2、机器人的坐标系、机器人的坐标系手部坐标系手部坐标系参考机器人手部的坐标系,也称机参考机器人手部的坐标系,也称机器人位姿坐标系,它表示机器人手部在指定坐标系中器人位姿坐标系,它表示机器人手部在指定坐标系中的位置和姿态。的位置和姿态。机座坐标系机座坐标系参考机器人机座的坐标系,它是机参考机器人机座的坐标系,它是机器人各活动杆件及手部的公共参考坐标系。器人各活动杆件及手部的公共参考坐标系。杆件坐标系杆件坐标系参考机器人指定杆件的坐标系,它参考机器人指定杆件的坐标系,它是在机器
5、人每个活动杆件上固定的坐标系,随杆件的是在机器人每个活动杆件上固定的坐标系,随杆件的运动而运动。运动而运动。绝对坐标系绝对坐标系参考工作现场地面的坐标系,它是参考工作现场地面的坐标系,它是机器人所有构件的公共参考坐标系。机器人所有构件的公共参考坐标系。 第第3 3章章 机器人运动学机器人运动学2 2、机器人的坐标系、机器人的坐标系手部坐标系手部坐标系 h 机座坐标系机座坐标系 0 杆件坐标系杆件坐标系 i i=1,n绝对坐标系绝对坐标系 B 3.1 3.1 坐标变换坐标变换1 1、直角坐标变换、直角坐标变换2 2、齐次坐标变换、齐次坐标变换3.1 3.1 坐标变换坐标变换1 1、直角坐标变换、
6、直角坐标变换iiiijjjj坐标之间的变换关系:坐标之间的变换关系:平移变换平移变换旋转变换旋转变换(1)平移变换)平移变换 设坐标系设坐标系 i 和坐标系和坐标系 j 具有相同的姿态,但它俩具有相同的姿态,但它俩的坐标原点不重合,若用的坐标原点不重合,若用 矢量表示坐标系矢量表示坐标系 i 和坐标系和坐标系 j 原点之间的矢量,则坐标系原点之间的矢量,则坐标系 j 就可以看成是由坐标就可以看成是由坐标系系 i 沿矢量沿矢量 平移变换而来的,所以称矢量平移变换而来的,所以称矢量 为为平移变平移变换矩阵换矩阵,它是一个,它是一个3 31 1的矩阵,即:的矩阵,即: 3.1 3.1 坐标变换坐标变
7、换ijp1 1、直角坐标变换、直角坐标变换 zyxijppppiiiijjjjijpijpijp3.1 3.1 坐标变换坐标变换1 1、直角坐标变换、直角坐标变换(1)平移变换)平移变换 若空间有一点在坐标系若空间有一点在坐标系 i 和坐标系和坐标系 j 中分别用矢中分别用矢量量 和和 表示,则它们之间有以下关系:表示,则它们之间有以下关系:称上式为称上式为坐标平移方程坐标平移方程。 irjrjijirpr iiiijjjjijpirjr(2)旋转变换)旋转变换 设坐标系设坐标系 i 和坐标系和坐标系 j 的原点重合,但它俩的姿的原点重合,但它俩的姿态不同,则坐标系态不同,则坐标系 j 就可以
8、看成是由坐标系就可以看成是由坐标系 i 旋转变旋转变换而来的,旋转变换矩阵比较复杂,最简单的是绕一根换而来的,旋转变换矩阵比较复杂,最简单的是绕一根坐标轴的旋转变换,下面以此来对旋转变换矩阵作以说坐标轴的旋转变换,下面以此来对旋转变换矩阵作以说明。明。 3.1 3.1 坐标变换坐标变换1 1、直角坐标变换、直角坐标变换iiiijjjj(2)旋转变换)旋转变换绕绕z轴旋转轴旋转角角 坐标系坐标系 i 和坐标系和坐标系 j 的原点重合,坐标系的原点重合,坐标系 j 的的坐标轴方向相对于坐标系坐标轴方向相对于坐标系 i 绕轴旋转了一个绕轴旋转了一个角。角。角的正负一般按右手法则确定,即由角的正负一般
9、按右手法则确定,即由z轴的矢端看,逆轴的矢端看,逆时钟为正时钟为正。3.1 3.1 坐标变换坐标变换1 1、直角坐标变换、直角坐标变换iiiijjjj(2)旋转变换)旋转变换绕绕z轴旋转轴旋转角角 若空间有一点若空间有一点p,则其,则其在坐标系在坐标系 i 和坐标系和坐标系 j 中中的坐标分量之间就有以下关系:的坐标分量之间就有以下关系: 3.1 3.1 坐标变换坐标变换1 1、直角坐标变换、直角坐标变换iiiijjjj jijjijjizzyxyyxx cossinsincos(2)旋转变换)旋转变换绕绕z轴旋转轴旋转角角 若补齐所缺的有些项,再作适当变形,则有:若补齐所缺的有些项,再作适当
10、变形,则有: 3.1 3.1 坐标变换坐标变换1 1、直角坐标变换、直角坐标变换 jjjijjjijjjizyxzzyxyzyxx1000cossin0sincos (2)旋转变换)旋转变换绕绕z轴旋转轴旋转角角 将上式写成矩阵的形式,则有:将上式写成矩阵的形式,则有: 3.1 3.1 坐标变换坐标变换1 1、直角坐标变换、直角坐标变换 jjjiiizyxzyx1000cossin0sincos (2)旋转变换)旋转变换绕绕z轴旋转轴旋转角角 再将其写成矢量形式,则有:再将其写成矢量形式,则有:称上式为坐标旋转方程,式中:称上式为坐标旋转方程,式中: p点在坐标系点在坐标系ii中的坐标列阵(矢
11、量);中的坐标列阵(矢量); 点在坐标系点在坐标系jj中的坐标列阵(矢量);中的坐标列阵(矢量); 坐标系坐标系jj变换到坐标系变换到坐标系ii的的旋转变换矩阵旋转变换矩阵,也称为也称为方向余弦矩阵方向余弦矩阵。 3.1 3.1 坐标变换坐标变换1 1、直角坐标变换、直角坐标变换jzijirRr ,irjr , zijR(2)旋转变换)旋转变换 旋转变换矩阵,也称为方向余弦矩阵,旋转变换矩阵,也称为方向余弦矩阵,是一个是一个3 33 3的矩阵,其中的每个元素就是坐标系的矩阵,其中的每个元素就是坐标系 i 和和坐标系坐标系 j 相应坐标轴夹角的余弦值,它表明坐标系相应坐标轴夹角的余弦值,它表明坐
12、标系 j 相对于坐标系相对于坐标系 i 的姿态(方向)。的姿态(方向)。3.1 3.1 坐标变换坐标变换1 1、直角坐标变换、直角坐标变换 , zijR(2)旋转变换)旋转变换绕绕x x轴旋转轴旋转角的角的 旋转变换矩阵为:旋转变换矩阵为: 3.1 3.1 坐标变换坐标变换1 1、直角坐标变换、直角坐标变换 cossin0sincos0001,xijRiiiijjjj(2)旋转变换)旋转变换绕绕y y轴旋转轴旋转角的角的 旋转变换矩阵为:旋转变换矩阵为: 3.1 3.1 坐标变换坐标变换1 1、直角坐标变换、直角坐标变换 cos0sin010sin0cos, yijRiiiijjjj(2)旋转
13、变换)旋转变换旋转变换矩阵的逆矩阵旋转变换矩阵的逆矩阵 旋转变换矩阵的逆矩阵既可以用线性代数的方法求旋转变换矩阵的逆矩阵既可以用线性代数的方法求出,也可以用逆向的坐标变换求出。以绕出,也可以用逆向的坐标变换求出。以绕z轴旋转轴旋转角角为例,其为例,其逆向变换即为绕逆向变换即为绕z轴旋转轴旋转- -角角,则其旋转变换,则其旋转变换矩阵就为:矩阵就为: 3.1 3.1 坐标变换坐标变换1 1、直角坐标变换、直角坐标变换 1000cossin0sincos, zijR(2)旋转变换)旋转变换旋转变换矩阵的逆矩阵旋转变换矩阵的逆矩阵 比较以下两式:比较以下两式: 结论结论: 3.1 3.1 坐标变换坐
14、标变换1 1、直角坐标变换、直角坐标变换 1000cossin0sincos, zjiR 1000cossin0sincos, zijRTzijzijRR)()(,1, (3)联合变换)联合变换 设坐标系设坐标系ii和坐标系和坐标系jj之间存在先平移变换,后之间存在先平移变换,后旋转变换,则空间任一点在坐标系旋转变换,则空间任一点在坐标系ii和坐标系和坐标系jj中中的矢量之间就有以下关系:的矢量之间就有以下关系: 称上式为直角坐标系中的坐标称上式为直角坐标系中的坐标联合变换方程联合变换方程。3.1 3.1 坐标变换坐标变换1 1、直角坐标变换、直角坐标变换jijijirRpr (3)联合变换)
15、联合变换 若坐标系若坐标系ii和坐标系和坐标系jj之间是先平移变换,后旋之间是先平移变换,后旋转变换,则上述关系是应如何变化?转变换,则上述关系是应如何变化?3.1 3.1 坐标变换坐标变换1 1、直角坐标变换、直角坐标变换)(jijijirpRr 例例:已知坐标系:已知坐标系BB的初始位置与坐标系的初始位置与坐标系AA重合,首先重合,首先 坐标系坐标系BB沿坐标系沿坐标系AA的的x x轴移动轴移动1212个单位,并沿坐个单位,并沿坐 标系标系AA的的y y轴移动轴移动6 6个单位,再绕坐标系个单位,再绕坐标系AA的的z z轴旋轴旋 转转3030,求平移变换矩阵和旋转变换矩阵。假设某,求平移变
16、换矩阵和旋转变换矩阵。假设某 点在坐标系点在坐标系BB中的矢量为中的矢量为 ,求该点,求该点 在坐标系在坐标系AA中的矢量。中的矢量。 3.1 3.1 坐标变换坐标变换1 1、直角坐标变换、直角坐标变换kjirB095 解解:由题意:由题意可得平移变换矩阵和旋转变换矩阵分别为:可得平移变换矩阵和旋转变换矩阵分别为: ,则:则: 3.1 3.1 坐标变换坐标变换1 1、直角坐标变换、直角坐标变换 0612ABp 1000866. 05 . 005 . 0866. 0100030cos30sin030sin30cosABR 0794.13830.110951000866. 05 . 005 . 0
17、866. 00612BABABArRpr(1 1)齐次坐标的定义)齐次坐标的定义 空间中任一点在直角坐标系中的三个坐标分量用空间中任一点在直角坐标系中的三个坐标分量用 表示,若有四个不同时为零的数表示,若有四个不同时为零的数 与三个直角坐标分量之间存在以下关系:与三个直角坐标分量之间存在以下关系: 则称则称 是空间该点的齐次坐标。是空间该点的齐次坐标。 3.1 3.1 坐标变换坐标变换2 2、齐次坐标变换、齐次坐标变换),(zyxkzzkyykxx ,),(kzyx ),(kzyx (1 1)齐次坐标的定义)齐次坐标的定义齐次坐标的性质齐次坐标的性质.空间中的任一点都可用齐次坐标表示;空间中的
18、任一点都可用齐次坐标表示;.空间中的任一点的直角坐标是单值的,但其对应的空间中的任一点的直角坐标是单值的,但其对应的齐次坐标是多值的;齐次坐标是多值的;.k是比例坐标,它表示直角坐标值与对应的齐次坐标是比例坐标,它表示直角坐标值与对应的齐次坐标值之间的比例关系;值之间的比例关系;.若比例坐标若比例坐标k=1,则空间任一点,则空间任一点( (x, y, z) )的齐次坐标的齐次坐标为为(x, y, z) ,以后用到齐次坐标时,一律默认,以后用到齐次坐标时,一律默认k=1 。 3.1 3.1 坐标变换坐标变换2 2、齐次坐标变换、齐次坐标变换(2 2)齐次变换矩阵()齐次变换矩阵(D-HD-H矩阵
19、)矩阵) 若坐标系若坐标系jj是是ii先沿矢量先沿矢量 平移,再绕平移,再绕z轴旋转轴旋转角得到的,则空间任一点在坐标角得到的,则空间任一点在坐标系系ii和坐标系和坐标系jj中的矢量和对应的变换矩阵之间就中的矢量和对应的变换矩阵之间就有有 ,写成矩阵形式则为:,写成矩阵形式则为: 3.1 3.1 坐标变换坐标变换2 2、齐次坐标变换、齐次坐标变换kpjpippzyxij jzijijirRpr , jjjzyxiiizyxpppzyx1000cossin0sincos (2 2)齐次变换矩阵()齐次变换矩阵(D-HD-H矩阵)矩阵)再用坐标分量等式表示,则有:再用坐标分量等式表示,则有: 3.
20、1 3.1 坐标变换坐标变换2 2、齐次坐标变换、齐次坐标变换 jzijjyijjxizpzyxpyyxpx cossinsincos(2 2)齐次变换矩阵()齐次变换矩阵(D-HD-H矩阵)矩阵) 引入齐次坐标,补齐所缺各项,再适当变形,则有:引入齐次坐标,补齐所缺各项,再适当变形,则有: 3.1 3.1 坐标变换坐标变换2 2、齐次坐标变换、齐次坐标变换 110001110010cossin10sincosjjjzjjjiyjjjixjjjizyxpzyxzpzyxypzyxx (2 2)齐次变换矩阵()齐次变换矩阵(D-HD-H矩阵)矩阵)再将其写成矩阵形式则有:再将其写成矩阵形式则有:
21、 3.1 3.1 坐标变换坐标变换2 2、齐次坐标变换、齐次坐标变换 110001000cossin0sincos1jjjzyxiiizyxpppzyx (2 2)齐次变换矩阵()齐次变换矩阵(D-HD-H矩阵)矩阵)由此可得联合变换的齐次坐标方程为:由此可得联合变换的齐次坐标方程为: 式中,式中, 齐次坐标变换矩阵齐次坐标变换矩阵, 它是一个它是一个4 44 4的矩阵。的矩阵。 3.1 3.1 坐标变换坐标变换2 2、齐次坐标变换、齐次坐标变换 11jijirMrijM(2 2)齐次变换矩阵()齐次变换矩阵(D-HD-H矩阵)矩阵)齐次坐标变换矩阵的意义齐次坐标变换矩阵的意义若将齐次坐标变换
22、矩阵分块,则有:若将齐次坐标变换矩阵分块,则有:意义意义:左上角的:左上角的3 33 3矩阵是两个坐标系之间的矩阵是两个坐标系之间的旋转变换旋转变换矩阵,它描述了姿态关系矩阵,它描述了姿态关系;右上角的;右上角的3 31 1矩阵是两个矩阵是两个坐标系之间的坐标系之间的平移变换矩阵,它描述了位置关系平移变换矩阵,它描述了位置关系,所,所以齐次坐标变换矩阵又称为以齐次坐标变换矩阵又称为位姿矩阵位姿矩阵。 3.1 3.1 坐标变换坐标变换2 2、齐次坐标变换、齐次坐标变换 1010001000cossin0sincos,ijzijzyxijpRpppM 101000ijijzzzzyyyyxxxxi
23、jpRpaonpaonpaonM(2 2)齐次变换矩阵()齐次变换矩阵(D-HD-H矩阵)矩阵)齐次坐标变换矩阵的意义齐次坐标变换矩阵的意义齐次变换矩阵的通式为:齐次变换矩阵的通式为: 式中,式中, jj的原点在的原点在ii中的坐标分量;中的坐标分量; jj的的x x轴对轴对ii的三个方向余弦;的三个方向余弦; jj的的y y轴对轴对ii的三个方向余弦;的三个方向余弦; jj的的z z轴对轴对ii的三个方向余弦。的三个方向余弦。3.1 3.1 坐标变换坐标变换2 2、齐次坐标变换、齐次坐标变换zyxppp,zyxnnn,zyxooo,zyxaaa,(2 2)齐次变换矩阵()齐次变换矩阵(D-H
24、D-H矩阵)矩阵)单独的平移或旋转齐次坐标变换矩阵单独的平移或旋转齐次坐标变换矩阵 平移变换的齐次矩阵为:平移变换的齐次矩阵为:3.1 3.1 坐标变换坐标变换2 2、齐次坐标变换、齐次坐标变换 zyxijpppp已已知知: 101000100010001),(ijzyxzyxppEppppppTransM则:则:(2 2)齐次变换矩阵()齐次变换矩阵(D-HD-H矩阵)矩阵)单独的平移或旋转齐次坐标变换矩阵单独的平移或旋转齐次坐标变换矩阵 旋转变换的齐次矩阵为:旋转变换的齐次矩阵为:3.1 3.1 坐标变换坐标变换2 2、齐次坐标变换、齐次坐标变换 1000cossin0sincos, zi
25、jR已已知知: 1001000010000cossin00sincos),(z,ijzRRzRotM 则:则:(2 2)齐次变换矩阵()齐次变换矩阵(D-HD-H矩阵)矩阵)单独的平移或旋转齐次坐标变换矩阵单独的平移或旋转齐次坐标变换矩阵 同理可得:同理可得:3.1 3.1 坐标变换坐标变换2 2、齐次坐标变换、齐次坐标变换 cossin0sincos0001,xijR已已知知: 10010000cossin00sincos00001),( x,ijxRRxRotM则:则:(2 2)齐次变换矩阵()齐次变换矩阵(D-HD-H矩阵)矩阵)联合变换与联合变换与单步齐次变换矩阵的关系单步齐次变换矩阵
展开阅读全文