八个有趣模型-搞定空间几何体的外接球与内切球-课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《八个有趣模型-搞定空间几何体的外接球与内切球-课件.ppt》由用户(三亚风情)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 八个 有趣 模型 搞定 空间 几何体 外接 内切球 课件
- 资源描述:
-
1、八个有趣模型搞定空间几何体的外接球与内切球平台合作1123例习题教学的标准例习题教学的标准例习题教学的策略例习题教学的策略目录contents类型一、墙角模型墙角模型(三条线两个垂直,不找球心的位置即可求出球半径)(三条线两个垂直,不找球心的位置即可求出球半径)2222)2(cbaR2222cbaR方法:找三条两两垂直的线段,直接用公式,即求出R。类型一、墙角模型墙角模型(三条线两个垂直,不找球心的位置即可求出球半径)(三条线两个垂直,不找球心的位置即可求出球半径)例1.1 已知各顶点都在同一球面上的正四棱柱的高为4,体积为16,则这个球的表面积是(C)解:类型一、墙角模型墙角模型(三条线两个
2、垂直,不找球心的位置即可求出球半径)(三条线两个垂直,不找球心的位置即可求出球半径)解:类型一、墙角模型墙角模型(三条线两个垂直,不找球心的位置即可求出球半径)(三条线两个垂直,不找球心的位置即可求出球半径)类型二、垂面模型垂面模型(一条直线垂直于一个平面)(一条直线垂直于一个平面)题设2.18类型二、垂面模型垂面模型(一条直线垂直于一个平面)(一条直线垂直于一个平面)题设2.2如图6,7,8,P的射影是ABC的外心三棱锥P-ABC的三条侧棱相等三棱锥P-ABC的底面ABC在圆锥的底上,顶点P点也是圆锥的顶点。类型二、垂面模型垂面模型(一条直线垂直于一个平面)(一条直线垂直于一个平面)方法二:
3、方法二:小圆直径参与构造大圆。例2.2一个几何体的三视图如右图所示,则该几何体外接球的表面积为()类型三、切瓜模型类型三、切瓜模型(两个平面互相垂直)(两个平面互相垂直)类型三、切瓜模型类型三、切瓜模型(两个平面互相垂直)(两个平面互相垂直)类型三、切瓜模型类型三、切瓜模型(两个平面互相垂直)(两个平面互相垂直)类型三、切瓜模型类型三、切瓜模型(两个平面互相垂直)(两个平面互相垂直)解:由正弦定理或找球心都可得,2R=7,S=4R2=49。类型三、切瓜模型类型三、切瓜模型(两个平面互相垂直)(两个平面互相垂直)类型三、切瓜模型类型三、切瓜模型(两个平面互相垂直)(两个平面互相垂直)类型三、切瓜
4、模型类型三、切瓜模型(两个平面互相垂直)(两个平面互相垂直)解:选A例3.3 已知三棱锥S-ABC的所有顶点都在球O的球面上,是边长为1的正三角形,SC为球O的直径,且SC=2,则此棱锥的体积为()类型四、汉堡模型类型四、汉堡模型(直棱柱的外接球、圆柱的外接球)(直棱柱的外接球、圆柱的外接球)题设:如图10-1,图10-2,图10-3,直三棱柱内接于球(同时直棱柱也内接于圆柱,棱柱的上下底面可以是任意三角形)类型四、汉堡模型类型四、汉堡模型(直棱柱的外接球、圆柱的外接球)(直棱柱的外接球、圆柱的外接球)例4.1 直三棱柱ABC-A1B1C1的各顶点都在同一球面上,AB=AC=AA1=2,ABC
展开阅读全文