第八章立体几何初步体 讲义(知识点与经典例题赏析) 2020-2021学年高一升高二数学暑假复习-新人教A版(2019)高中数学必修第二册高一下学期.doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《第八章立体几何初步体 讲义(知识点与经典例题赏析) 2020-2021学年高一升高二数学暑假复习-新人教A版(2019)高中数学必修第二册高一下学期.doc》由用户(大布丁)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 第八章 立体几何初步体 讲义知识点与经典例题赏析 2020-2021学年高一升高二数学暑假复习-新人教A版2019高中数学必修第二册高一下学期 第八 立体几何 初步 讲义 知识点 经典 例题 赏析 下载 _必修第二册_人教A版(2019)_数学_高中
- 资源描述:
-
1、第八章 立体几何初步体知识点与经典例题赏析一.柱、锥、台、球的结构特征(1)棱柱:几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。(2)棱锥几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。(3)棱台: 几何特征:上下底面是相似的平行多边形 侧面是梯形 侧棱交于原棱锥的顶点(4)圆柱:定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成几何特征:底面是全等的圆;母线与轴平行;轴与底面圆的半径垂直;侧面展开图是一个矩形。(5)圆锥:定义:以直角三角形的一条直角边为旋
2、转轴,旋转一周所成几何特征:底面是一个圆;母线交于圆锥的顶点;侧面展开图是一个扇形。(6)圆台:定义:以直角梯形的垂直与底边的腰为旋转轴,旋转一周所成几何特征:上下底面是两个圆;侧面母线交于原圆锥的顶点;侧面展开图是一个弓形。(7)球体:定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体几何特征:球的截面是圆;球面上任意一点到球心的距离等于半径。例1如图所示,观察四个几何体,其中判断正确的是( )A是棱台B是圆台C是棱锥D是棱柱例2下列结论错误的是( )A圆柱的每个轴截面都是全等矩形B长方体是直四棱柱,直四棱柱不一定是长方体C四棱柱、四棱台、五棱锥都是六面体D用一个平面截圆锥,必得
3、到一个圆锥和一个圆台例3如图所示的简单组合体的组成是( )A棱柱、棱台B棱柱、棱锥C棱锥、棱台D棱柱、棱柱二.空间几何体的直观图斜二测画法的基本步骤:建立适当直角坐标系(尽可能使更多的点在坐标轴上)建立斜坐标系,使=450(或1350)画对应图形在已知图形平行于X轴的线段,在直观图中画成平行于X轴,且长度保持不变;在已知图形平行于Y轴的线段,在直观图中画成平行于Y轴,且长度变为原来的一半; 直观图与原图形的面积关系:例4如图,在中,若的水平放置直观图为,则的面积为( )ABCD例5如果一个水平放置的三角形的斜二测直观图是一个等腰直角三角形,斜边长为2,且斜边落在斜二测坐标系的横轴上,则原图形的
4、面积为( )ABCD2例6如图,矩形OABC是水平放置的一个平面图形的直观图,其中OA=6,OC=2,则原图形是( )A正方形B矩形C菱形D梯形三.空间几何体的表面积与体积圆柱侧面积; 圆锥侧面积:圆台侧面积: 球的表面积和体积 .正三棱锥是底面是等边三角形,三个侧面是全等的等腰三角形的三棱锥。 正四面体是每个面都是全等的等边三角形的三棱锥。例7(多选)已知某几何体的直观图如图所示,其中底面为长为8,宽为6的长方形,顶点在底面投影为底面中心,高为4.(1)求该几何体的体积; (2)求该几何体的侧面积.例8已知圆台上、下底面的底面积分别为,且母线长为13(1)求圆台的高;(2)求圆台的侧面积例9
5、已知母线长为的圆锥的侧面展开图为半圆.(1)求圆锥的底面积;(2)在该圆锥内按如图所示放置一个圆柱,当圆柱的侧面积最大时,求圆柱的体积.例10一个透明的球形装饰品内放置了两个具有公共底面的圆锥,且这两个圆锥的顶点和底面圆周都在这个球面上,如图,已知圆锥底面面积是这个球的表面积的,设球的半径为R,圆锥底面半径为r.(1)试确定R与r的关系,并求出大圆锥与小圆锥的侧面积的比值.(2)求出两个圆锥的总体积(即体积之和)与球的体积之比.四 平面基本性质即三条公理公理1公理2公理3图形语言文字语言如果一条直线上的两点在一个平面内,那么这条直线在此平面内.过不在一条直线上的三点,有且只有一个平面.如果两个
6、不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.符号语言作用判断线在面内确定一个平面证明多点共线公理2的三条推论:推论1 经过一条直线和这条直线外的一点,有且只有一个平面; 推论2 经过两条相交直线,有且只有一个平面;推论3 经过两条平行直线,有且只有一个平面.五直线与直线的位置关系共面直线: 相交直线:同一平面内,有且只有一个公共点;平行直线:同一平面内,没有公共点;异面直线:不同在任何一个平面内,没有公共点。(既不平行,也不相交)例11如图所示,用符号语言可表述为( )A,B,C,D,例12如图所示,点P,Q,R,S分别在正方体的四条棱上,且是所在棱的中点,则直线PQ与RS
7、是异面直线的是( )ABCD例13(多选)下列说法正确的是( )A三点确定一个平面B三角形一定是平面图形C梯形一定是平面图形D四边形一定是平面图形例14如果两条直线a与b没有公共点,那么a与b的位置关系可能是( )A相交B平行C异面D垂直15如图,空间四边形中,、分别是、的中点,、分别是、上的点,且.求证:三条直线、交于一点.例16如图,已知D,E是ABC的边AC,BC上的点,平面经过D,E两点,若直线AB与平面的交点是P,求证:点P在直线DE上.六直线与平面的位置关系有三种情况:在平面内有无数个公共点 符号 a 相交有且只有一个公共点 符号 a= A平行没有公共点 符号 a说明:直线与平面相
8、交或平行的情况统称为直线在平面外,可用a 来表示1直线和平面平行的判定(1)定义:直线和平面没有公共点,则称直线平行于平面;(2)判定定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。简记为:线线平行,则线面平行。 符号: 例17如图,在直三棱柱ABCA1B1C1中,D,E分别为BC,AC的中点,AB=BC求证:A1B1平面DEC1.2直线和平面平行的性质定理:一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行。简记为:线面平行,则线线平行. 符号: 例18如图,在三棱锥PABC中,D,E,F分别是PA,PB,PC的中点M是AB上一点,连接MC,N是PM
9、与DE的交点,连接FN,求证:FNCM3直线与平面垂直定义:如果一条直线垂直于一个平面内的任意一条直线,那么就说这条直线和这个平面垂直。判定定理:一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直。简记为:线线垂直,则线面垂直. 符号:例19如图所示,A1A是圆柱的母线,AB是圆柱底面圆的直径,C是底面圆周上异于A,B的任意一点,A1A=AB=2.求证:BC平面A1AC4.直线与平面垂直性质:垂直于同一个平面的两条直线平行。 符号: 性质:垂直于同一直线的两平面平行 符号:推论:如果两条平行直线中,有一条垂直于平面,那么另一条直线也垂直于这个平面符号语言:ab, a,b例20如图所
10、示,是边长为的正六边形所在平面外一点,在平面内的射影为的中点.证明.七平面与平面的位置关系:平行没有公共点: 符号 相交有一条公共直线: 符号 =a1平面与平面平行的判定(1)定义:两个平面没有公共点,称这两个平面平行;(2)判定定理:一个平面内的两条相交直线与另一个平面平行,则这两个平面平行。简记为:线面平行,则面面平行. 符号:例21如图,在四棱锥PABCD中,E,F,G分别是PC,PD,BC的中点,DC/AB,求证:平面PAB/平面EFG.2平面与平面平行的性质定理:如果两个平行的平面同时与第三个平面相交,那么它们的交线平行。简记为:面面平行,则线线平行. 符号:补充:平行于同一平面的两
11、平面平行; 夹在两平行平面间的平行线段相等;两平面平行,一平面上的任一条直线与另一个平面平行;例22四面体如图所示,过棱的中点作平行于,的平面,分别交四面体的棱于点证明:四边形是平行四边形3平面与平面垂直的判定定义:两个平面相交,如果它们所成的二面角是直二面角,就说这两个平面互相垂直。判定定理:一个平面经过另一个平面的一条垂线,则这两个平面垂直。简记为:线面面垂直,则面面垂直. 符号:推论:如果一个平面平行于另一个平面的一条垂线,则这个平面与另一个平面垂直。例23已知是圆的直径,垂直圆所在的平面,是圆上任一点求证:平面平面.4.平面与平面垂直的性质定理:两个平面互相垂直,则一个平面内垂直于交线
12、的直线垂直于另一个平面。简记为:面面垂直,则线面垂直. 证明线线平行的方法三角形中位线 平行四边形 线面平行的性质 平行线的传递性 面面平行的性质 垂直于同一平面的两直线平行; 证明线线垂直的方法定义:两条直线所成的角为90;(特别是证明异面直线垂直); 线面垂直的性质利用勾股定理证明两相交直线垂直;利用等腰三角形三线合一证明两相交直线垂直;例24如图,在四棱锥PABCD中,PAPD,底面ABCD是矩形,侧面PAD底面ABCD,E是AD的中点(1)求证:AD平面PBC;(2)求证:AB平面PAD八:三种成角1.异面直线成角步骤:1、平移,转化为相交直线所成角;2、找锐角(或直角)作为夹角;3、
13、求解注意:取值范围:(0。,90。.例25如图,是圆的直径,点是弧的中点,分别是的中点,求异面直线与所成的角.2.线面成角:斜线与它在平面上的射影成的角,取值范围:(0。,90。.如图:PA是平面的一条斜线,A为斜足,O为垂足,OA叫斜线PA在平面上射影,为线面角。26如图,直三棱柱的底面为直角三角形,两直角边和的长分别为4和3,侧棱的长为5.(1)求三棱柱的体积;(2)设是中点,求直线与平面所成角的大小.3.二面角:从一条直线出发的两个半平面形成的图形 取值范围:(0。,180。)例27如图,在四棱锥中,底面是边长为的正方形,侧棱,求二面角的平面角的大小.九、常见体积的求法:定义法和等体积法
14、例28如图所示,已知长方体的体积为,是的中点,是上的动点,求三棱锥的体积例29如图,在四棱锥中,底面为正方形,底面,为的中点,为线段上的点,且(1)求证:平面平面;(2)求点到平面的距离例30如图,在四棱锥P-ABCD中,底面ABCD是平行四边形,侧面PAB底面,(1)求证:平面(2)过AC的平面交PD于点M,若,求三棱锥的体积参考答案1D【分析】利用空间几何体的概念特征直接判断即可.【详解】根据棱台的概念,中上下底面不相似,不是棱台;根据圆台的概念,中上下底面不平行,不是圆台;根据棱锥的概念,中下底面不是多边形,即不是棱锥;故A,B,C都是错误的,根据棱柱的概念,是上下底面为五边形的五棱柱的
展开阅读全文
链接地址:https://www.163wenku.com/p-2931716.html