直线与直线的位置关系课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《直线与直线的位置关系课件.ppt》由用户(三亚风情)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 直线 位置 关系 课件
- 资源描述:
-
1、知识梳理1两条直线平行与垂直的判定(1)两条直线平行对于两条不重合的直线l1,l2,其斜率分别为k1,k2,则有l1l2.特别地,当直线l1、l2的斜率都不存在时,l1与l2(2)两条直线垂直如果两条直线l1,l2斜率存在,设为k2,k2,则l1l2k1k21,当一条直线斜率为零,另一条直线斜率不存在时,两直线垂直k1k2平行解 1过点(1,0)且与直线x2y20平行的直线方程是()Ax2y10Bx2y10C2xy20 Dx2y10答案A2(2009安徽文)直线l过点(1,2)且与直线2x3y40垂直,则l的方程是()A3x2y10 B3x2y70C2x3y50 D2x3y80答案A3曲线yk
2、|x|及yxk(k0)能围成三角形,则k的取值范围是()A0k1 B01 Dk1答案C解析数形结合法在同一坐标系中作出两函数的图像,可见k1时围不成三角形,k1时能围成三角形6若直线L1:ax2y60与直线L2:x(a1)ya210,则L1L2时,a_,L1L2时,a_.7已知两条直线l1:axby40和l2:(a1)xyb0,求满足下列条件的a、b的值(1)l1l2,且l1过点(3,1);(2)l1l2,且坐标原点到这两条直线的距离相等解析(1)由已知可得l2的斜率必存在,k21a.若k20,则1a0,a1.l1l2,直线l1的斜率k1必不存在,即b0.又l1过(3,1),3ab40,即b3
3、a4(不合题意)此种情况不存在,即k20.若k20,即k1,k2都存在,例1已知两条直线l1(3m)x4y53m,l22x(5m)y8.当m分别为何值时,l1与l2:(1)相交?(2)平行?(3)垂直?点评运用有斜率的两直线平行或垂直的条件处理两直线位置关系时,要紧紧抓住k1,k2及b1,b2之间的关系,需要注意的是“有斜率”这一前提条件,否则会使解题不严谨甚至导致错误如题:当k取何值时,两直线xky0和kx(1k)y0互相垂直?很可能漏掉解k0.判断两条直线平行、垂直、重合时,不要忘记考虑两条直线中有一条或两条直线的斜率均不存在的情况在两条直线l1、l2斜率都存在且不重合的条件下,才有l1l
4、2k1k2与l1l2k1k21.在斜率不存在或斜率为零情况下讨论两直线位置关系宜用数形结合求解已知两直线l1xysin10和l22xsiny10,试求的值,使得:(1)l1l2;(2)l1l2.例2过点A(0,1)作直线,使其被两直线l1:x3y100,l2:2xy80所截得的线段恰被点A所平分,求此直线的方程分析(1)利用待定系数法可用点斜式求解,注意检验斜率不存在的情形;(2)也可采用设点的方法,然后利用两点式求解已知直线l经过点P(3,1),且被两平行直线l1:xy10和l2:xy60截得的线段之长为5,求直线l的方程分析如右图,由点斜式得l方程,分别与l1、l2联立,求得两交点A、B的
5、坐标(用k表示),再利用|AB|5可求出k的值,从而求得l的方程例3求直线l1:y2x3关于直线l:yx1对称的直线l2的方程分析转化为点关于直线的对称,利用方程组求解设直线l2的方程为y1k(x2),即kxy2k10.在直线l上任取一点(1,2),由题设知点(1,2)到直线l1、l2的距离相等,由点到直线的距离公式得在直线l3xy10上求一点P,使得:(1)P到A(4,1)和B(0,4)的距离之差最大;(2)P到A(4,1)和C(3,4)的距离之和最小分析(1)在直线l上求一点P,使P到两定点的距离之和最小当两定点A、B在直线l的异侧时,由两点之间线段最短及三角形中任意两边之和都大于第三边可
展开阅读全文