河道流量演算与洪水预报课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《河道流量演算与洪水预报课件.ppt》由用户(三亚风情)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 河道 流量 演算 洪水 预报 课件
- 资源描述:
-
1、第4章 河道流量演算与洪水预报圣维南方程组0LQtA连续性方程动量方程fSLVgVtVgtz1水面坡度局地惯性项迁移惯性项摩阻坡度惯性项01LQBtz或说明:底宽 b水面宽 B水深 h1m(边坡系数)A水面宽:过水断面面积:湿润周:水力半径:流量模数:3/222112)(12)(2ARnKmhbhbmhARmhbhbmhAmhbBn 河床粗糙度对固定河床均是水深h的函数 水力学模型的核心是圣维南方程的求解。圣维南方程是双曲拟线性偏微分方程,目前还无法求得其精确解析解,在实际应用中常采用数值近似解。数值近似方法主要有:-特征线法-直接差分-瞬时流态法-微幅波理论法-有限单元法特征线法:特征线法:
2、 这一方法是根据偏微分方程理论,先将基本方程变换为特征线的常微分方程组,然后对该微分方程进行离散,再结合初始条件和边界条件求数值解或图解。这种方法物理概念明确,数学分析严谨,计算结果精度较高。差分法:差分法: 将基本方程组直接离散化,进而联解由此得到的一组代数方程组。依据离散化时采用的数值格式不同,可将直接差分法分为显式差分法和隐式差分法显式差分法和隐式差分法两种。显式差显式差分法是根据前一时刻的已知值逐点分别求解下一时刻的未知值,计算过程简单分法是根据前一时刻的已知值逐点分别求解下一时刻的未知值,计算过程简单,但稳定性差,计算时间步长限制较多,步长较大时,计算可能不稳定,精度也难以保证;隐式
3、差分法不能直接由前一时刻求解下一时刻的值,必须同时对所有节点列出隐式差分法不能直接由前一时刻求解下一时刻的值,必须同时对所有节点列出差分方程而求解大型代数方程组,计算较为复杂差分方程而求解大型代数方程组,计算较为复杂,但稳定性好,计算时间步长可以取得较大,计算速度快。Preissmann计算方法-四点隐格式四点隐格式)(21)(2),(1111njnjnjnjfffftxfxffxffxfnjnjnjnj1111)1 (tfffftfnjnjnjnj21111下标代表空间步长上标表示时间步长为权重系数, (01)(x,t)令令 ,并记并记 ,则上式为:则上式为:)(21)(2),(11njnj
4、jjfffftxfxffxffxfnjnjjj11tfftfjj21Preissmann计算方法-四点隐格式四点隐格式0)()(0122KQQxzgAAQxtQxQBtz利用Preissmann格式,上式变为:0)()()(2211111xQQxQQBBBBtzzjjjjjjjjjj0)(|)(|2)1 ()(|)(|2)(1)()(2)(2)()()1 ()()(222111121111211111111111112121211121111njnjnjnjnjnjnjnjnjnjnjnjnjnjnjnjnjnjjjnjnjjjnjnjnjnnjnjnjnjjKQQAKQQAgKQQAKQQA
5、gzzxzzxAAgAAgAQAQxAQAQxtQQjj0)(|)(|2)1 ()(| )()(| )(2)(1)()(2)(2)()()1 ()()(222111121211111111111121221121111njnjnjnjnjnjnjnjjnjjnjjnjjnjjnjjnjjnjjnjnjnjjjnjnjjjnjnjnjnjnjjnjjnjjnjjKQQAKQQAgKKQQQQAAKKQQQQAAgzzxzzxAAgAAgAQAQxAAQQAAQQxtQQjjPreissmann计算方法-四点隐格式四点隐格式利用下面关系式上式线性化:)1 (1)1 (11jjnjjjnjjnjAA
6、AAAAAA利用利用在在的泰勒展开的泰勒展开)21 ()(1)1 ()(1)(12222njjnjnjjnjjnjKKKKKKKK2)1 (1)(xxf在在的展开的展开jnjnjjnjQQQQQ2)()(22jnjnjnjjnjjnjQQQQQQQQ|2| )(jnjjnjnjjzBzdzdAAjnjnjjzdzdKKjnjnjjzdzdBB0)()(1)(4)(111111xQQxQQBBBBBBtzzjjjjjjjjjjjjPreissmann计算方法-四点隐格式四点隐格式线性化后,连续性方程变为:0)()(1 4)(111111xQQxQQBBBBBBtzzjjjjjjjjjjjj0)(
7、)()(44)(112111111xQQxQQBBzdzdBzdzdBtBBtzzjjjjjjjnjnjjnjnjjjjjjjjjjjjjjEzDQCzBQA1111111)(411njnjjBBxtAnjnjnjnjnnjjdzdBBBxQQtBj2111)()(41)(411jjjBBxtCnjnjnjnjnjnjjdzdBBBxQQtD112111)()(41)()(4111njnjnjnjjQQBBxtEMake Presentation much more funWPS官方微博kingsoftwpsjjjjjjjjjEzDQCzBQA212122222)(|241njnjnjnjnj
8、jKQAtgAQxtAPreissmann计算方法-四点隐格式四点隐格式线性化后,动量方程变为:2)(|)()()()(2211222njnjnjnjnjnjnjnjnjnjnjnjnjnjnjjdzdKKABKQQtgzzgAAgAQBxtB2111112)(|241njnjnjnjnjjKQAtgAQxtC2)(|)()()()(2211111212112njnjnjnjnjnjnjnjnjnjnjnjnjnjnjjdzdKKABKQQtgzzgAAgAQBxtD)(|)(|)()( 2)( 2(2211111121212njnjnjnjnjnjnjnjnjnjnjnjnjnjnjnjjK
9、QQAKQQAtgzzAAgAQAQxtEPreissmann计算方法-四点隐格式四点隐格式通常边界条件分为以下通常边界条件分为以下3 3种:种:1. 给出水位变化过程:给出水位变化过程:2. 给出流量变化过程:3. 给出水位流量关系:以给出水位变化过程为例,方程组的矩阵形式如下:nmnmmmnnmmmmmmmmmmmzzEEEEEEzzzQzQzQzQDCBADCBADCBADCBADCBADCBA11211221221111111322111, 21, 21, 21, 21, 11, 11, 11, 122222222121212122121212111111111100000000000
10、0000000010至此,将复杂的偏微分方程组偏微分方程组化为了简单的线性代数方程组线性代数方程组这是偏微分方程运算的有限差分运算的基本流程和方法!这是偏微分方程运算的有限差分运算的基本流程和方法!随着遥感、计算机技术的进步,对圣维南方程的越来越高。根据对动力方程的不同简化,河道里的洪水波可分为:根据对动力方程的不同简化,河道里的洪水波可分为:1)运动波运动波2)扩散波扩散波3)惯性波)惯性波4)动力波)动力波1 1)运动波)运动波在动力方程中,对于山区性的河道,河底比降较大,在动力方程中,对于山区性的河道,河底比降较大,惯性项与附加比降项惯性项与附加比降项都可忽略。都可忽略。 0LQutQ特
11、点特点:水位:水位- -流量、流量流量、流量- -过水断面面积、波速过水断面面积、波速- -流量流量关系均为单一线;波速不变的条件下,流量在传播过关系均为单一线;波速不变的条件下,流量在传播过程中只位移而不衰减。程中只位移而不衰减。发生条件发生条件:只有在陡坡的情况下,才有可能:只有在陡坡的情况下,才有可能, ,而满足运动波的条件。而满足运动波的条件。 0SS 2 2)扩散波)扩散波在动力方程中,对于一般的天然河道水流,在动力方程中,对于一般的天然河道水流,惯性项较惯性项较其它项要小两个数量级,通常忽略其它项要小两个数量级,通常忽略。常用的。常用的流量演算流量演算水文学方法都忽略惯性项,且常将
12、动力方程简化为槽水文学方法都忽略惯性项,且常将动力方程简化为槽蓄方程,属于扩散波蓄方程,属于扩散波。 SSKLhSKQLL或或 式中式中-恒定流流量恒定流流量; ; -附加比降附加比降 S0-恒定流比降恒定流比降, ,一般可近似等于河底比降一般可近似等于河底比降 001SSQQ0QS扩散波的特点:扩散波的特点: 1)水位流量关系为多值函数关系。)水位流量关系为多值函数关系。 2)洪水在传播过程中,既要位移,又要坦化。)洪水在传播过程中,既要位移,又要坦化。 3)波速)波速 。流量流量Q和过水断面面积和过水断面面积A关关系有绳套,故对应某一传播流量的波速并非单值系有绳套,故对应某一传播流量的波速
13、并非单值AQu/3)惯性波)惯性波当当i=if=0时,即时,即水面比降为水面比降为0,没有摩阻损失,没有摩阻损失,水水深沿程变化完全是由惯性项引起的。深沿程变化完全是由惯性项引起的。4 4)动力波)动力波动力方程中各项均不忽略所描述的洪水波为动力动力方程中各项均不忽略所描述的洪水波为动力波波。对于受潮汐、闸、坝等严重影响的河段要用。对于受潮汐、闸、坝等严重影响的河段要用动力波进行演算。动力波进行演算。水量平衡方程和槽蓄方程水量平衡方程和槽蓄方程 LtAQtALQ0LLLtAQ00对连续性方程沿河长积分,可导出河段的水量平衡方程的微分形式:dttdWttWtOtIttWLAtLtAtItOtQt
14、LQQLLL)()()()()()()(), 0(),(000对河长L积分:dttdWttWtOtI)()()()(I,OtI(t)O(t)tdWI,OtI(t)O(t)tWt1t2河段水量平衡方程的差分形式:河段水量平衡方程的差分形式:I1I2Q1Q2122121)(21)(21WWtQQtII槽蓄方程槽蓄方程),( QIfW 河段的槽蓄量取决于和段中的水位沿程分布情况,即水面曲线的形状。但是,河段每一断面的水位与流量又存在一定的关系。当把河段的槽蓄量表示为入流量和出流量的函数时:称为河段的称为河段的槽蓄方程槽蓄方程I: 河段的入流流量;Q: 河段的出流流量;W:河段的蓄量当把河段的槽蓄量表
15、示为出流量的函数时:称为河段的称为河段的蓄泄方程蓄泄方程)(QfW 122121)(21)(21WWtQQtII水量平衡方程:槽蓄方程:)()(2211QfWQfW当已知河段入流量过程当已知河段入流量过程,根据水量平衡方程和槽蓄方程,即可求得,根据水量平衡方程和槽蓄方程,即可求得Q2值和值和W2值,值,对河段预报而言,对河段预报而言,Q2即为预报值;即为预报值;若逐时段连续计算,即可得到下断面的若逐时段连续计算,即可得到下断面的出流量过程出流量过程Q(t)矩形水槽稳定流: W=L*A=K*V*A=K*Q天然河道稳定流 H下Q0单一; H下W单一; QW单一天然河道不稳定流 出现绳套关系第二节第
16、二节 特特征河长法征河长法 特征河长特征河长(抵偿河长)的概念有前苏联著名水文学家加里宁和米留柯夫于1958年首次提出。 苏联水文学家。1916年11月10日生于巴库,1975年1月2日卒于莫斯科。1937年毕业于哈尔科夫水文气象学院,1951年获地理科学博士学位,自1954年起任教授,1970年当选为科学院通讯院士。19371942年,先后在国立水文研究所和哈尔科夫水文气象学院从事科研和教学工作。19421961年,在苏联水文气象总局中央预报研究所任高级研究员、水文预报研究处处长,兼任敖德萨水文气象学院教授。1961年在莫斯科大学地理系任教,1963年起担任陆地水文教研室主任。他是苏联科学院
17、水问题研究所创始人之一。他多年担任气象与水文杂志编委及水资源杂志副主编。 加里宁曾长期从事春汛和雨洪形成过程春汛和雨洪形成过程的基本研究,提出总入流概念,开辟了不依靠降水量资料计算产流量的途径,并创立用河网蓄水量和三角级数汇流曲线进行洪水预报的方法。1958年他与.米留柯夫共同发表特征河长概念,得出河槽非恒定流的近似计算方法,并应用分段连续演算的方法推求汇流曲线,于1963年进一步推导出河槽瞬时单位线。特征河长概念还在流域汇流计算和水位流量关系单值化等实际工作中得到应用。他对全球河川径流变化及水量交换的总规律进行过研究,提出了全球水文问题和水资源宏观管理的新课题。加里宁倡议并参加了应用空间信息
18、进行水文研究的工作。在苏联和国际水文界中,他较早倡议并参加应用电子计算机进行水文过程数学模拟的研究。 他的主要著作有短期水情预报方法原理短期水情预报方法原理(1952)、水体非恒定流近似计、水体非恒定流近似计算(合著,算(合著,1958)、水文预报(合著,)、水文预报(合著,1960)及全球水文学问题)及全球水文学问题(1968)。有些著作已在其他国家翻译出版。),(SzfQ由水力学可知,河段中任一断面的由水力学可知,河段中任一断面的流量是水位和水面流量是水位和水面比降的函数比降的函数:LZZS0S0+SS0-S上中下Z下Q 假设中断面水文不变;假设中断面水文不变; 漲洪时(蓝线),上断面先涨
19、,下断面后涨,漲洪时(蓝线),上断面先涨,下断面后涨,下断面水位比稳定水流降低下断面水位比稳定水流降低z,使,使得下断面的流量比稳定流时减少得下断面的流量比稳定流时减少;但由于这时水面比降比稳定流时;但由于这时水面比降比稳定流时增加了增加了S,这又会这又会使得通过下断面的流量比稳定流时增加使得通过下断面的流量比稳定流时增加;落洪时,由于上断面先落,下断面后落,落洪时,由于上断面先落,下断面后落,情况与涨洪时相反。情况与涨洪时相反。)(QfW 寻找这样一个河段长,在其下端面处,由于水位变化引起的流量变化正好与由于水面比降变化引起的流量变化相互抵偿,以致河段的槽蓄量与其下端面流量呈呈单值关系,即:
20、则该河长称为特征河长(抵偿河长)dsSQdzzQdQ对Q=Q(z,S)求全微分:根据特征河长定义:000)(0222,2,0QzSQLSSQSLzQSQSQSKQSLdzdQl 特征河长与河道的水力要素,即流量、比降和水位-流量关系坡度有关,是河道水力特征的综合参数;l河道的水力特征又决定了河道洪水波运动的特点基于特征河长的流量演算:基于特征河长的流量演算:在演算河段长等于特征河长时,假定蓄量W和出流Q存在线性关系。槽蓄方程:QKQfWl)(Kl为常数,特征河长的传播时间122121)(21)(21WWtQQtII2211QKWQKWll水量平衡方程:槽蓄方程:lllKtKtCKttCQCII
展开阅读全文