岩体的力学特征课件.pptx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《岩体的力学特征课件.pptx》由用户(三亚风情)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 力学 特征 课件
- 资源描述:
-
1、岩体力学Rock Mass Mechanics第四章:岩体的基本力学性质Mechanical Characteristics of Rock p本章内容n4.1 概述n4.2 岩体结构面的分析n4.3 结构面的变形特性n4.4 结构面的剪切强度特性n4.5 结构面的力学效应n4.6 破碎岩体的破坏n4.7 岩体的应力-应变分析n4.8 岩体力学性质的现场测试n基本要求n了解岩体结构的基本类型,理解岩体结构面特征;n掌握结构面的变形、剪切强度特性及力学效应掌握结构面的变形、剪切强度特性及力学效应;n了解岩体应力-应变曲线、破碎岩体的再破坏、力学性质现场测试方法;本章内容及基本要求 天然岩体天然岩
2、体,从宏观上来说,它是由节理或裂隙节理或裂隙切割成一块一块的、互相排列与咬合着的岩块岩块所组成的。 岩体内存在各种各样的节理裂隙称之为结构面结构面。所谓结构面,是指具有极低的或没有抗拉强度的不连续面,包括一切地质分离面。被结构面分割成的岩块称之为结构体结构体,结构面结构面与结构体结构体组成岩体岩体的结构单元。 结构面的存在使岩体具有不这续性,因而,这类岩体被称为不连续岩体,也被称为节理岩体。4.1 概述岩体岩体= =岩块岩块+ +结构面结构面 岩岩 体体结构结构面面岩块岩块不连续面:包括节理、裂隙、孔隙、断面、孔洞、层面4.1 概述4.1 概述 一般来说。结构面结构面是岩体中的软弱面软弱面,由
3、于它的存在,增加了岩体中应力分布及受力变形的复杂性。同时,还降低了岩体的力学强度和稳定性能。由此可见,岩体岩体是由岩石块岩石块和各种各样的结构面结构面共同组成的综合休综合休。对岩体的强度和稳定性能起作用的不仅是岩石块岩石块,而是岩石块与结构面的综合体,在大多数情况下,结构面结构面所起的作用更大。 短板理论短板理论:木桶是由多块木板组合而成,衡量一只木桶的储水量,取决于它最短的那块木板。4.1 概述 岩 体结构面影响完整性很好连续介质力学方法 非常破碎土力学方法 两者之间裂隙体力学方法 岩体不连续性,各向异性 反映区域性地质构造 降低岩体强度 4.1 概述 节理的强度低于岩石的强度,而节理岩体的
4、强度以完整完整岩石强度为上限,节理的强度为下限岩石强度为上限,节理的强度为下限,处在节理的强度和岩块的强度之间。 从岩体的力学强度来看,岩体岩体的强度与组成此岩体的岩块岩块和结构面结构面的力学性质有很大不同。节理岩体的强度与岩石强度的区别节理岩体的强度与岩石强度的区别岩石;节理化岩体:节理4.1 概述4.2.1 结构面定量描述的基本参数(1) 产状 产状产状是指结构面在空间空间的分布状态分布状态。它是由走向走向、倾向倾向、倾角倾角所组成的三要素来描述。由于走向可根据倾向来加以推算,一般只用倾向、倾向、倾角倾角来表示。4.2 岩体结构面的分析产状要素走向:走向:岩层面与水平面的交线,称走向线。走
5、向线两端所指的方向称走向倾向:倾向:垂直于走向线沿层面向下所引的直线,称倾斜线。其在水平面上的投影线所指方向,称为倾向 倾角:倾角:倾斜线与其在水平面上的投影线间的夹角4.2.1 结构面定量描述的基本参数4.2 岩体结构面的分析4.2.1 结构面定量描述的基本参数4.2 岩体结构面的分析(2) 间距 结构面的间距是指同组相邻结构面的垂直距离同组相邻结构面的垂直距离。通常采用同组结构面的平均间距通常采用同组结构面的平均间距。间距的大小直接反映了该组结构面的发育程度,也就是反映了岩体的完整程度。(3) 延展性 在一个岩体的露头上,所见到的结构面迹线的长结构面迹线的长度度。该参数反映了该组结构面的规
6、模大小。结构面的规模大小。4.2.1 结构面定量描述的基本参数4.2 岩体结构面的分析(4) 粗糙度和起伏度 相对于结构面平均平面的表面不平整度,通常用结构面的粗糙度和起伏度粗糙度和起伏度表示。这是增加结构面抗剪强度的一个几何参数。4.2.1 结构面定量描述的基本参数4.2 岩体结构面的分析 起伏度起伏度是相对较大级的表面不平整状态,若起伏度较大,可能影响结构面的局部产状。 对结构面的强度具有较大影响的,主要取决于粗粗糙度糙度。结构面越粗糙其抗剪强度也会越高。4.2.1 结构面定量描述的基本参数4.2 岩体结构面的分析(5) 结构面面壁强度 结构面是由两个表面组成。当结构面的面壁风面壁风化程度
7、化程度与母岩母岩很接近,则其强度与母岩一致;风化程度与母岩相差较大时,显然其强度将要小得多。(6) 结构面的开度与充填物 结构面两个面壁之间的垂直距离两个面壁之间的垂直距离称作结构面的开结构面的开度度。处在结构面缝隙中的物质被称作充填物充填物。4.2.1 结构面定量描述的基本参数4.2 岩体结构面的分析(7) 结构面的渗透性 在单个结构面或者整个岩体中所见到水流和水量的状态。水对岩体的影响是不言而喻的。通常用水用水的流速和流量的流速和流量来表示可能对岩体的损害。(8) 结构面的组数和岩块尺寸 岩体中结构面的组数反映了结构面的发育程度结构面的发育程度,而结构面组数的多少,又可反映岩休被结构面切割
8、所岩休被结构面切割所形成的岩块的大小形成的岩块的大小。4.2.1 结构面定量描述的基本参数4.2 岩体结构面的分析4.2 岩体结构面分析p4.2.2 结构面的分类(一)按结构面的成因分类(一)按结构面的成因分类1.原生节理:成岩过程中形成的结构面。代表性的是岩层的层面、柱状节理面等。2.构造节理:构造运动所形成的结构面。断层、岩体中的共轭节理等。3.次生节理:成岩后由于风化作用形成。风化节理等。 (二)结构面的绝对分类和相对分类(二)结构面的绝对分类和相对分类工程要求工程要求1.绝对分类:建立在结构面延展长度基础上的。 细小结构面 延长小于1m; 中等结构面 延长为1-10m; 巨大结构面 延
9、长大于10m。 缺点:未与工程结构相结合。2.相对分类:结合工程结构类型和尺寸大小。详见表4-1。 4.2 岩体结构面分析p4.2.2 结构面的分类4.2 岩体结构面分析p4.2.2 结构面的分类( (三三) ) 按地质力学观点分类按地质力学观点分类 将岩体的地质破坏分为三大种:将岩体的地质破坏分为三大种: 破坏面:破坏面:大面积破坏,以出现大和粗的节理为代表,一般这种破坏由缓慢地质作用引起 破坏带:破坏带:小面积密集破坏,岩体中出现细节理、局部节理、风化节理等为代表,一般认为由快速地质作用引起 两者之间两者之间 过渡类型4.2 岩体结构面分析p4.2.2 结构面的分类表表4-3 4-3 按力
10、学观点的结构面和破坏带分类(缪勒)按力学观点的结构面和破坏带分类(缪勒)单节理单节理节理组节理组节理群节理群羽毛状羽毛状 节理节理破碎带破碎带无充填有充填充填物有粘性4.2 岩体结构面分析p4.2.2 结构面的分类 岩体破碎程度的分类由裂隙度裂隙度和切割度切割度两个定量指标组成。(一)裂隙度(一)裂隙度K K a 单组结构面 设取样线长度为L,在L上出现的节理的个数为n,则裂隙度裂隙度K K为 K= n/ L(单位长度上节理的数量) 节理沿取样线方向上平均间距d为 d= L/ n=1/K4.2 岩体结构面分析p4.2.3 岩体破碎程度的分类4.2 岩体结构面分析p4.2.3 岩体破碎程度的分类
11、 当取样线垂直节理的走向取样线垂直节理的走向时,则d为节理走向的垂垂直间距直间距。 d180cm 整体结构 d=30180 块状结构 d30 破裂结构 d6.5 极破裂结构 K=01/m 疏节理 按裂隙度分类 K=110/m 密节理 (节理分类) K=10100/m 很密节理 K=1001000/m 糜棱节理 按垂直间距分类(岩体分类) 4.2 岩体结构面分析p4.2.3 岩体破碎程度的分类 b 多组结构面两组节理的裂隙度K计算图4.2 岩体结构面分析p4.2.3 岩体破碎程度的分类 节理并非在岩体内全部贯通,用“切割度”来描述节理贯通程度节理贯通程度。 切割度切割度指单位面积的岩体中结构面面
12、积所占的比例。 在岩体中取一平直断面,总截面积为总截面积为A A,其中被节理面切割的面积为切割的面积为a a;则切割度为 多处不连续切割叠加: AaXeniiaa(二)切割度(二)切割度4.2 岩体结构面分析p4.2.3 岩体破碎程度的分类4.2 岩体结构面分析p4.2.3 岩体破碎程度的分类4.2 岩体结构面分析p4.2.3 岩体破碎程度的分类式中:岩体体积内部被某组节理切割的程度,单位m2/m3.KXXerrX 上述Xe,仅是某一平面上节理面所占面积的比仅是某一平面上节理面所占面积的比率率。有时为了研究岩体空间内部某组节理的切割程岩体空间内部某组节理的切割程度度Xr,可由裂隙度K与平面切割
13、度Xe建立如下关系式:4.2 岩体结构面分析p4.2.3 岩体破碎程度的分类(三)岩体破碎程度分类(表(三)岩体破碎程度分类(表4-34-3) 按岩体按岩体裂隙度裂隙度K K和和切割度切割度XeXe的关系岩体破碎程度分级的关系岩体破碎程度分级4.2 岩体结构面分析p4.2.3 岩体破碎程度的分类主要内容及要求:主要内容及要求:1 1、结构面的法向变形特性、结构面的法向变形特性理解理解结构面的法向弹性变形;掌握掌握结构面的法向闭合变形;了解了解结构面闭合变形的本构方程;2 2、结构面的剪切位移特性、结构面的剪切位移特性掌握掌握结构面剪切位移曲线的分类及特征;理解理解结构面扩容特性;了解了解结构面
14、剪切位移曲线的本构方程。4.3 结构面的变形特性(一)结构面的法向弹性变形(齿状接触)(一)结构面的法向弹性变形(齿状接触) 岩壁面有平滑与粗糙之分,面接触、点接触 结构面的法向弹性变形结构面的法向弹性变形:指岩壁两侧接触面或点产生的弹性变形 结构面法向弹性变形的基本假设:(1)面接触,接触面边长h的正方形,且n个面接触(2)每个接触面所受力相等(3)每个接触面力学特性相同4.3 结构面的变形特性p4.3.1 结构面的法向变形特性式中:d-为块体的边长; n-为接触面的个数; -为每个接触面的面积; -为泊松比;E-为弹性模量。nhEdm)1(222202h按弹性力学按弹性力学布辛涅布辛涅斯克
15、公式斯克公式计算齿状计算齿状节理接触面弹性变节理接触面弹性变形引起的闭合变形形引起的闭合变形 在以上假设条件下,可将作用在结构面试件上总的力平均分摊到每个接触面,之后利用弹性理论中布辛涅斯克的解计算一个接触面上的法向弹性变形,来表示结构面法向的弹性变形。4.3 结构面的变形特性p4.3.1 结构面的法向变形特性4.3 结构面的变形特性p4.3.1 结构面的法向变形特性试验步骤:(1)制备试件;(2)作-曲线(a);(3)将试件切开,并配 称接触再作曲线(b);a.无节理b.径向劈裂d.非配称接触c.配称接触(二)结构面的法向闭合变形(二)结构面的法向闭合变形 齿状(点)接触,开始是齿顶的压缩压
16、碎闭合; 点接触面接触;弹性、啮合、压碎变形。 介绍古德曼(Goodman)试验方法:4.3 结构面的变形特性p4.3.1 结构面的法向变形特性(4)非配称接触,作曲线(c);(5)两种节理的可压缩性: 配称节理的压缩量(啮合变形量): 非配称节理的压缩量(啮合与压碎变形量)abVacVa.无节理b.径向劈裂d.非配称接触c.配称接触4.3 结构面的变形特性p4.3.1 结构面的法向变形特性图图4 47 7 一条张开裂缝的压缩变形曲线一条张开裂缝的压缩变形曲线4.3 结构面的变形特性p4.3.1 结构面的法向变形特性(三)结构面闭合变形的本构方程(三)结构面闭合变形的本构方程(GoodmanG
17、oodman法)法) 本构方程:应力与变形间的数学表达式张开节理无抗拉强度结构面在压应力下存在极限闭合量,且e(节理的厚度)基本假设基本假设 状态方程状态方程(压力与变形(压力与变形的关系)的关系)mcVmcVtmcVVVA)(原位应力 法向变形mcVV A,t回归参数(4-12)4.3 结构面的变形特性p4.3.1 结构面的法向变形特性为原位应力,由所测的法向变形V的初始条件决定。 当V= 0 时, 为曲线与纵坐标轴(轴)上截距的数值(图b);4.3 结构面的变形特性p4.3.1 结构面的法向变形特性 当A=t=1时,式(4-12)变成双曲线形式, V与1/ 的关系如图c所示。可见,此直线在
18、V轴的截距为Vmc ,直线斜率为Vmc。 当A与t不等于1时,则其曲线类型相对比较复杂,可通过拟合的方法求得A与t,确定曲线方程。4.3 结构面的变形特性p4.3.1 结构面的法向变形特性 古德曼根据压缩荷载与变形的关系曲线,得出了配称试验和非配称试验的本构方程, 配称试验: 非配称试验:100.00370.0018log(0.0119)mcVV100.003 0.0079og(0.0387)mcVV 作用在试件上的压缩荷载(MPa) V结构面的闭合变形(cm) Vmc结构面可能出现的最大闭合变形(cm)4.3 结构面的变形特性p4.3.1 结构面的法向变形特性(一)结构面的剪切位移曲线(一)
19、结构面的剪切位移曲线节理“ ”曲线分为4类。见下图(a)重新胶结后结构面特性,后期地质条件影响下出现脆断型破坏的特征4.3 结构面的变形特性p4.3.2 结构面的剪切位移特性(b)硬性结构面的剪切特性,受到风化的结构面岩壁,沿着某个相对比较硬的突出物产生一定量的变形后被剪断,曲线为切齿型(c)与(b)比较接近,不同处为表现几次峰值强度,由先后剪断数个突出物所致4.3 结构面的变形特性p4.3.2 结构面的剪切位移特性(d)为软弱性,结构面中存在充填物,在剪应力作用下的变形特性,明显表现出塑性变形的特征 由于结构面的剪切变形的复杂性,通过简化采用剪切刚度来描述结构面的剪切变形。假设剪切位移是作用
20、在结构面上的正应力与剪应力的函数,则剪切刚度Ks可用下式表示:( , )sfuKuu 结构面的形态与作用在结构面上的正应力及剪应力对其均有影响4.3 结构面的变形特性p4.3.2 结构面的剪切位移特性 分三个阶段:、体积压缩阶段,初期,基本呈直线;、体积匀速增大阶段,曲线斜率称作结构面的平均爬坡角;、即将达到剪切峰值时,斜率有所降低(突出物被剪断)另外,随正应力增大,体积压缩阶段随之减小,甚至消失,第二阶段曲线斜率(平均爬坡角)随之降低(二)结构面的扩容(非线性的体积膨胀)曲线(二)结构面的扩容(非线性的体积膨胀)曲线4.3 结构面的变形特性p4.3.2 结构面的剪切位移特性1、脆断型剪切位移
21、曲线本构方程 从下图中可以看出,随着正应力的增大,脆断型的曲线可以分成两类:图(a)常刚度型曲线,其特点为随正应力增大,结构面剪切刚度不变,但剪切峰值对应的位移随之增大;图(b)变刚度曲线,其特点为随正应力增大,结构面剪切刚度随之增大,但剪切峰值对应的位移近似相等 。(三)结构面剪切位移曲线的本构方程(三)结构面剪切位移曲线的本构方程4.3 结构面的变形特性p4.3.2 结构面的剪切位移特性2、软弱型剪切位移曲线本构方程 其剪切位移曲线与土的应力-应变曲线十分相似,故,可用此方法来描述剪切位移特性,表达式如下:uau b式中,a、b是与结构面剪切位移曲线形态有关的系数。1/a是峰值剪应力的渐近
22、线,它是与峰值剪应力有关的参数;1/b是剪切位移曲线的初始曲线斜率,是与结构面初始剪切刚度有关的参数。4.3 结构面的变形特性p4.3.2 结构面的剪切位移特性主要内容及要求:主要内容及要求:掌握掌握结构面的面摩擦效应;掌握掌握结构面的楔摩擦效应(主要包括规则齿形结构面帕顿公式、不规则齿形结构面巴顿公式);了解了解结构面转动、滚动摩擦效应(自学);理解理解结构面强度的尺寸效应;4.4 结构面的剪切强度特性p平直光滑无充填结构面:平直光滑无充填结构面:结构面的面摩擦,在结构面的表面是平整、甚至是光滑的条件下,在正应力和剪应力作用下,表现出来的表面摩擦特性。tanp滑动的判别:p稳定:夹角a摩擦角
23、4.4 结构面的剪切强度特性p4.4.1 结构面的面摩擦效应tan 当=s时,物体开始滑动,立刻减小到k ,以后滑动过程中保持常数值;在某一位移u1,剪切力撤出,滑动停止,位移不可逆;若再滑动,则=s,滑动后再降为k,剪应力所做的功为剪应力与剪切位移的乘积,主要消耗于结构面表面摩擦所产生的热或者在接触表面上转化为永久变形。4.4 结构面的剪切强度特性p4.4.1 结构面的面摩擦效应图4-13 面摩擦的扩容(夹角与剪切位移的关系图) 自然界中,大多数结构面的表面是起伏不平的,这种起伏不平结构面的强度产生一个附加的值。 (一)规则齿形结构面的楔效应摩擦强度(一)规则齿形结构面的楔效应摩擦强度 基本
24、思想:将起伏不平的结构面表面形态简化成具有相同角度的规则齿形 具体方法:帕顿(帕顿(PattonPatton)强度公式)强度公式和勒单尼(Ladanyi)强度公式4.4 结构面的剪切强度特性p4.4.2 结构面的楔摩擦效应1.帕顿(帕顿(PattonPatton)强度公式)强度公式图图4-14(b) 4-14(b) 简化的规简化的规则齿形节理面试件则齿形节理面试件 图4-14(b) 简化的规则齿形节理面试件受到剪应力T和正应力N。T增大,上部块体沿齿面滑移,滑移量可分解为水平和垂直两分量,总滑移方向仍为AB方向。规则齿面与水平面的夹角为,试件在外力作用下其受力可简化成图4-14(a)所表示的形
25、态。4.4 结构面的剪切强度特性p4.4.2 结构面的楔摩擦效应图图4-14(a) 4-14(a) 规则齿形节规则齿形节理面试件受力分析图理面试件受力分析图 试件可看成受法向力N和剪应力T作用下的直剪试验。设齿形斜面上正应力与剪应力分别为N和T,则根据力的投影原理可得:cossinsincoscossinsincosNNTTNTNNTTNT4.4 结构面的剪切强度特性p4.4.2 结构面的楔摩擦效应图4-14(a) 规则齿形节理面试件受力分析图若剪切破坏,则N与T必须满足(假设结构面强度可用面摩擦的判据表示):tan(423)jTN式中, 为岩体在外力作为岩体在外力作用下总的内摩擦角用下总的内
展开阅读全文