曲线积分及曲面积分习题46页PPT课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《曲线积分及曲面积分习题46页PPT课件.ppt》由用户(三亚风情)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 曲线 积分 曲面 习题 46 PPT 课件
- 资源描述:
-
1、(一)(一)曲线积分与曲面积分曲线积分与曲面积分(二)各种积分之间的联系(二)各种积分之间的联系(三)场论初步(三)场论初步 一、主要内容一、主要内容曲线积分曲线积分曲面积分曲面积分对面积的对面积的曲面积分曲面积分对坐标的对坐标的曲面积分曲面积分对弧长的对弧长的曲线积分曲线积分对坐标的对坐标的曲线积分曲线积分定义定义计算计算定义定义计算计算联系联系联系联系(一)(一)曲线积分与曲面积分曲线积分与曲面积分 曲曲 线线 积积 分分对弧长的曲线积分对弧长的曲线积分对坐标的曲线积分对坐标的曲线积分定定义义 niiiiLsfdsyxf10),(lim),( LdyyxQdxyxP),(),(),(),(
2、lim10iiiniiiiyQxP 联联系系dsQPQdyPdxLL)coscos( 计计算算 dtfdsyxfL22,),(三代一定三代一定)( dtQPQdyPdxL),(),(二代一定二代一定 (与方向有关与方向有关)与路径无关的四个等价命题与路径无关的四个等价命题条条件件在单连通开区域在单连通开区域D上上),(),(yxQyxP具有具有连续的一阶偏导数连续的一阶偏导数, ,则以下四个命题成立则以下四个命题成立. . LQdyPdxD与与路路径径无无关关内内在在)1( CDCQdyPdx闭闭曲曲线线, 0)2(QdyPdxduyxUD 使使内存在内存在在在),()3(xQyPD ,)4(
3、内内在在等等价价命命题题 曲曲 面面 积积 分分对面积的曲面积分对面积的曲面积分对坐标的曲面积分对坐标的曲面积分定定义义 niiiiiSfdSzyxf10),(lim),( xyiniiiiSRdxdyzyxR)( ),(lim),(10 联联系系 RdxdyQdzdxPdydz计计 算算一代一代,二换二换,三投三投(与侧无关与侧无关) 一代一代,二投二投,三定向三定向 (与侧有关与侧有关) dSRQP)coscoscos( dSzyxf),( xyDyxdxdyzzyxzyxf221),(, dxdyzyxR),( xyDdxdyyxzyxR),(,定积分定积分曲线积分曲线积分重积分重积分曲
4、面积分曲面积分计算计算计算计算计算计算Green公式公式Stokes公式公式Guass公式公式(二)(二)各种积分之间的联系各种积分之间的联系计算上的联系计算上的联系)( ,),(),()()(21面面元元素素 ddxdyyxfdyxfbaxyxyD)( ,),(),()()(),(),(2121体体元元素素dVdzzyxfdydxdVzyxfbaxyxyyxzyxz baLdsdxyxyxfdsyxf)( ,1)(,),(2曲曲线元素线元素 baLdxdxxyxfdxyxf)( ,)(,),(投投影影线线元元素素 xyDyxdxdyzzyxzyxfdSzyxf221),(,),( xyDdx
5、dyyxzyxfdxdyzyxR),(,),(其中其中dSRQPdxdyRQdzdxPdydz)coscoscos( dsQPQdyPdxLL)coscos( )(曲曲面面元元素素dS)(投影投影面元素面元素dxdy理论上的联系理论上的联系1.定积分与不定积分的联系定积分与不定积分的联系)()()()()(xfxFaFbFdxxfba 牛顿牛顿-莱布尼茨公式莱布尼茨公式2.二重积分与曲线积分的联系二重积分与曲线积分的联系)()(的的正正向向沿沿LQdyPdxdxdyyPxQLD 格林公式格林公式3.三重积分与曲面积分的联系三重积分与曲面积分的联系 RdxdyQdzdxPdydzdvzRyQxP
6、)(高斯公式高斯公式4.曲面积分与曲线积分的联系曲面积分与曲线积分的联系 dxdyyPxQdzdxxRzPdydzzQyR)()()( RdzQdyPdx斯托克斯公式斯托克斯公式梯度梯度kzujyuixugradu 通量通量旋度旋度环流量环流量zRyQxPAdiv RdxdyQdzdxPdydzkyPxQjxRzPizQyRArot)()()( RdzQdyPdx散度散度(三)(三)场论初步场论初步二、二、典型例题典型例题思路思路 LyQxPIddxQyP xQyP 0dd LyQxPI ),(),(00ddyxyxyQxPI闭合闭合非闭非闭闭合闭合非闭非闭补充曲线或用公式补充曲线或用公式对坐
7、标的曲线积分对坐标的曲线积分的计算法的计算法( , )d( , )dLP x yxQ x yy ()d dDQPIx yxy 例例 计算计算 LxxdymyedxmyyeI)cos()sin(,其中其中L为由点为由点)0 ,(a到点到点)0 , 0(的上半圆周的上半圆周0,22 yaxyx.解解myemyyeyyPxx cos)sin(yemyexxQxxcos)cos( xQyP 即即( (如下图如下图) )xyo)0 ,(aAMdxdyyPxQDAMOA )( Ddxdym,82am 0)(00 medxxaAO, 0 082 am.82am AMOAAOAOAOLI AMOAAOI。其其
8、中中计计算算例例22222:,)(2RzyxdSdczbyaxI dSddScdzbdyadxdSbcyzacxzabxydSzcybxaI2222222)222()222()(解:解: dSddSzcybxa222222200)(奇奇偶偶对对称称性性 dSddSzyxcba2222222)(31)(轮轮换换对对称称性性.)(314)(3122222222222 dRcbaRdSdRcba 曲面面积的计算法曲面面积的计算法SDxy),(yxfz xyoz dSS xyDyxdxdyzz221dsyxfSBAL ),(),(dxyyxfba 21),(oLBzxy),(yxfz sAab曲顶柱体
9、的表面积曲顶柱体的表面积 LDyxdsyxfdffS),()11(22 xzyo),(yxfz LD如图曲顶柱体,如图曲顶柱体,例例 3 3 求求柱柱面面13232 yx在在球球面面1222 zyx内内的的侧侧面面积积. .解解由对称性由对称性 LLdsyxzdsS2218, 1:3232 yxL)20(,sin,cos33 ttytx参参数数方方程程为为,cossin3)()(22tdttdtyxdstt tdttttScossin3sincos182066 tdttttcossincossin3242022 2022cossin324tdtt.233 对坐标的曲面积分的计算法对坐标的曲面积
10、分的计算法1. 利用高斯公式利用高斯公式)1(vzRyQxPd)( yxRxzQzyPdddddd 闭曲面闭曲面具有具有则则取取其其中中 外侧外侧. .在在若若RQP,中中所围成的空间域所围成的空间域 一阶连续偏导数一阶连续偏导数, ,2. 通过投影化为二重积分通过投影化为二重积分yxzyxRxzzyxQzyzyxPIdd),(dd),(dd),( yzDzyzyzyxPdd),),( zxDxzzxzyxQdd),(,( xyDyxyxzyxRdd),(,(注意注意 的确定的确定!3.向量点积法向量点积法(化为同一组坐标积分)化为同一组坐标积分) ,1,),(:yxffyxfz 法法向向量量
展开阅读全文