数模差分方程模型共89页课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《数模差分方程模型共89页课件.ppt》由用户(三亚风情)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数模 方程 模型 89 课件
- 资源描述:
-
1、第一节第一节 差分方程基本的基本概念与性质差分方程基本的基本概念与性质第二节第二节 市场经济中的蛛网模型市场经济中的蛛网模型第三节第三节 简单的鹿群增长模型简单的鹿群增长模型第四节第四节 减肥计划减肥计划节食与运动节食与运动第五节第五节 差分形式的阻滞增长模型差分形式的阻滞增长模型第六节第六节 按年龄分组的种群增长按年龄分组的种群增长第七章第七章 差分方程模型差分方程模型第一节第一节 差分方程的概念及性质差分方程的概念及性质一一.差分的定义与运算法则差分的定义与运算法则.,) 1()() 1 ()0(:).(111210nnnnnnnyyyyyyyyyyynfnfffxxfy也称为一阶差分,记
2、为的差分,为函数称函数的改变量,将之简记为,列函数值可以排成一个数取非负整数时,当设函数1.差分的定义差分的定义nnnnnnnnnnnyyyyyyyyyyyynfy12112122)()()()(,)(即差分的一阶差分的的二阶差分为函数函数.以以上上的的差差分分高高阶阶差差分分:二二阶阶及及二二阶阶)(),(3423nnnnyyyy差分:同样可定义三阶、四阶解解,则设2ny 12) 1()(222nnnnyn2) 12(1) 1(2) 12()(222nnnnyn022)(233nyn解解!)!1(nn.!2的一阶差分,二阶差分求例ny nnnyyy1! nn!2nnyynn!) 1(!)!1
3、() 1(2nnnnnnn)()() 1 (为常数CyCCynnnnnnzyzy)()2(2. 差分的四则运算法则差分的四则运算法则 nnnnnnnnnnyzzyyzzyzy113 14nnnnnnnnzzzyyzzy可参照导数的四则运算法则学习可参照导数的四则运算法则学习二二 差分方程的基本概念差分方程的基本概念1.差分方程与差分方程的阶.,2称为差分方程的函数方程含有未知函数的差分nnyy0),(2nmnnnyyyynF形式:定义定义1定义2:.,1的方程,称为差分方程个以上时期的符号含有未知函数两个或两nnyy) 1(0),(0),(11kyyynGyyynFknnnmnnn或形式:.称
4、称为为差差分分方方程程的的阶阶大大值值与与最最小小值值的的差差方方程程中中未未知知数数下下标标的的最最 注:由差分的定义及性质可知,差分方程的注:由差分的定义及性质可知,差分方程的不同定义形式之间可以相互转换。不同定义形式之间可以相互转换。是三阶差分方程;如0234235nnnyyy. 0133112tttyyynt,即可写成事实上,作变量代换程,但实际上是二阶差分方,虽然含有三阶差分,013nnyy,因此它是二阶差分方程由于该方程可以化为0133123nnnyyy2.差分方程的解差分方程的解.)(该差分方程的解边恒等,则称此函数为两代入差分方程后,方程如果函数ny含有相互独立的任意常数的个数
5、与差分方程的含有相互独立的任意常数的个数与差分方程的阶数相同的差分方程的解阶数相同的差分方程的解. .差分方程的通解差分方程的通解为了反映某一事物在变化过程中的客观规律为了反映某一事物在变化过程中的客观规律性,往往根据事物在初始时刻所处状态,对性,往往根据事物在初始时刻所处状态,对差分方程所附加的条件差分方程所附加的条件. .通解中任意常数被初始条件确定后的解通解中任意常数被初始条件确定后的解. .初始条件初始条件差分方程的特解差分方程的特解引例引例1: Fibonacci 数列数列 13世纪意大利著名数学家世纪意大利著名数学家Fibonacci在他的著作在他的著作算盘书算盘书中记载着这样一个
6、有趣的问题:中记载着这样一个有趣的问题: 一对刚出生的幼兔经过一个月可长成成兔,成兔再经过一一对刚出生的幼兔经过一个月可长成成兔,成兔再经过一个月后可以繁殖出一对幼兔个月后可以繁殖出一对幼兔. 若不计兔子的死亡数,问一年之若不计兔子的死亡数,问一年之后共有多少对兔子?后共有多少对兔子?月份月份 0 1 2 3 4 5 6 7 幼兔幼兔 1 0 1 1 2 3 5 8 成兔成兔 0 1 1 2 3 5 8 13 总数总数 1 1 2 3 5 8 13 21 将兔群总数记为将兔群总数记为 fn, n=0,1,2,,经过观察可以发现,数列,经过观察可以发现,数列fn满足下列递推关系:满足下列递推关系
7、: f0 = f1 =1, fn+2 = fn+1 + fn , n=0,1,2, 这个数列称为这个数列称为Fibonacci数列数列. Fibonacci数列是一个十分有趣数列是一个十分有趣的数列,在自然科学和数学领域中都有着广泛的应用的数列,在自然科学和数学领域中都有着广泛的应用. Fibonacci数列的一些实例数列的一些实例. 1. 蜜蜂的家谱蜜蜂的家谱 2. 钢琴音阶的排列钢琴音阶的排列 3. 树的分枝树的分枝 4. 杨辉三角形杨辉三角形引例引例2:日常的经济问题中的差分方程模型:日常的经济问题中的差分方程模型 假如你在银行开设了一个假如你在银行开设了一个1000元的存款账户,银行的
8、年利元的存款账户,银行的年利率为率为7%. 用用an表示表示n年后你账户上的存款额,那么下面的数列年后你账户上的存款额,那么下面的数列就是你每年的存款额:就是你每年的存款额: a0, a1, a2, a3, , an, 设设r为年利率,由于为年利率,由于an+1=an+r an, 因此存款问题的数学模型因此存款问题的数学模型是:是: a0=1000, an+1=(1+r)an, n=1,2,3, 从从1994年开始,我国逐步实行了大学收费制度年开始,我国逐步实行了大学收费制度. 为了保障子女为了保障子女将来的教育费用,小张夫妇从他们的儿子出生时开始,每年向将来的教育费用,小张夫妇从他们的儿子出
9、生时开始,每年向银行存入银行存入x元作为家庭教育基金元作为家庭教育基金. 若银行的年利率为若银行的年利率为r,试写出第,试写出第n年后教育基金总额的表达式年后教育基金总额的表达式. 预计当子女预计当子女18岁入大学时所需的岁入大学时所需的费用为费用为100000元,按年利率元,按年利率3%计算,小张夫妇每年应向银行存计算,小张夫妇每年应向银行存入多少元入多少元? 设设n年后教育基金总额为年后教育基金总额为an,每年向银行存入,每年向银行存入x元,依据复利元,依据复利率计算公式,得到家庭教育基金的数学模型为:率计算公式,得到家庭教育基金的数学模型为: a0=x, an+1=(1+r)an+x,
10、n=0,1,2,3, 小李夫妇要购买二居室住房一套,共需小李夫妇要购买二居室住房一套,共需30万元万元. 他们已经筹他们已经筹集集10万元,另外万元,另外20万元申请抵押贷款万元申请抵押贷款. 若贷款月利率为若贷款月利率为0.6%,还贷期限为还贷期限为20年,问小李夫妇每月要还多少钱?年,问小李夫妇每月要还多少钱? 设贷款额为设贷款额为a0,每月还贷额为,每月还贷额为x,月利率为,月利率为r,第,第n个月后的欠个月后的欠款额为款额为an,则,则 a0=200000, a1=(1+r)a0-x, a2=(1+r)a1-x, an=(1+r)an-1-x, n=1,2,3,例例3)(),(),(,
11、312111nfayynfayynfayyZUynnnnnnnnn解分别是下列差分方程的是差分方程求证nnnnZUyV.)()()(3211的解nfnfnfayynn证明证明由题设知:由题设知:)()()(312111nfaZZnfaUUnfayynnnnnnnnnnnnnnaZZaUUayyaVV1111)()()(321nfnfnf.是所给差分方程的解nV三三. 线性差分方程解的结构线性差分方程解的结构11110( )( )( )x nx nnxnxya x yax yax y n阶齐次线性差分方程的标准形式阶齐次线性差分方程的标准形式n阶非齐次线性差分方程的标准形式阶非齐次线性差分方程的
12、标准形式 1111( )( )( )x nx nnxnxya x yax yax yfx 1 2 0 xf11110( )( )( )x nx nnxnxya x yax yax y 1.n阶齐次线性差分方程解的结构阶齐次线性差分方程解的结构 1问题问题: :一一定定是是通通解解吗吗?kkyCyCyCy 2211,则,则若若nk 注注: 设设nyyy,21为为定定义义在在区区间间I内内的的n个个函函数数如如果果存存在在n个个不不全全为为零零的的常常数数,使使得得当当x在在该该区区间间内内有有恒恒等等式式成成立立 ( 是任意常数)是任意常数) nCCC, 21,02211 nnykykyk那么称
13、这些函数在区间内那么称这些函数在区间内线性相关;线性相关;否则称否则称线性无关线性无关. 2.n阶常系数非齐次线性差分方程解的结构阶常系数非齐次线性差分方程解的结构 xfyayayayxnxnnxnx 1111 2由此可见,要求出由此可见,要求出n阶常系数非齐次线性差分方阶常系数非齐次线性差分方程(程(2)的通解,只需求出()的通解,只需求出(1)的通解和()的通解和(2)的一个特解即可的一个特解即可.一阶常系数齐次线性差分方程的一般形式一阶常系数齐次线性差分方程的一般形式一阶常系数非齐次线性差分方程的一般形式一阶常系数非齐次线性差分方程的一般形式 1 2 .21次次线线性性差差分分方方程程所
14、所对对应应的的一一阶阶常常系系数数齐齐为为注注:)0(01为为常常数数 aayyxx)(1xfayyxx )00( xfa为为常常数数,四四 一阶常系数线性差分方程的解法一阶常系数线性差分方程的解法迭迭代代法法. 1)0(01为为常常数数 aayyxx 1)依依次次可可得得,为为已已知知,由由方方程程(设设10y01ayy 0212yaayy 0323yaayy .100 xxxxCaYCyyay 通通解解为为)的的方方程程(为为任任意意常常数数,于于是是差差分分满满足足差差分分方方程程,令令容容易易验验证证,01yaayyxxx .0241的通解求例nnyy解解21 a.21nnCy差分方程
15、的通解为特特征征根根法法. 2)0(01为常数aayynn 1)变变形形为为方方程程(1 )0(01为为常常数数 ayayxx .1函函数数的的形形式式一一定定为为某某一一指指数数可可以以看看出出,根根据据xxxy )得得,代代入入(设设1)0( xxy01 xxa 0 a 即即a 特征方程特征方程特征根特征根)的一个解,)的一个解,是(是(于是于是1xxay .1)的的通通解解是是(从从而而xxCay .1的的通通解解用用特特征征根根法法求求例例解解012 特征方程特征方程.21xxCY 差分方程的通解为差分方程的通解为21 特特征征根根.203201的特解的特解满足满足求求例例 yyyxx
16、解解;差分方程的通解为差分方程的通解为xxCY 31031 xxyy原原方方程程可可改改写写为为013 特征方程为特征方程为31 特特征征根根220 Cy,得,得代入代入.312xxY 所求差分方程的特解为所求差分方程的特解为二、二、 一阶常系数非齐次线性差分方程的求解一阶常系数非齐次线性差分方程的求解.xxYy分分方方程程的的通通解解另另一一项项是是对对应应的的齐齐次次差差,解解一一项项是是该该方方程程的的一一个个特特的的和和组组成成:差差分分方方程程的的通通解解由由两两项项一一阶阶常常系系数数非非齐齐次次线线性性 .2 xxxyYy)的的通通解解为为即即差差分分方方程程( 2)(1xfay
17、yxx )00( xfa为为常常数数,即即可可求求出出特特解解求求出出待待定定系系数数程程然然后后将将它它们们代代入入差差分分方方相相同同的的形形式式与与假假定定待待定定的的特特解解待待定定系系数数法法,.)(xfyx .较较为为方方便便解解采采用用待待定定系系数数法法求求其其特特时时,是是某某些些特特殊殊形形式式的的函函数数当当右右端端 xyxf:的的求求法法下下面面讨讨论论特特解解 xy 型型xpxfn )( 为为方方程程 2 xpayynxx 1 xpyaynxx 1即即是它的解,代入上式得是它的解,代入上式得设设 xy xpyaynxx 1 .1 次次多多项项式式是是次次多多项项式式,
18、是是且且也也应应该该是是多多项项式式,是是多多项项式式,因因此此由由于于 nynyyxpxxxn1.(1)nnnnxbxbxbxQy 110)(令令011 a不不是是特特征征方方程程的的根根,即即(2) nnnnxbxbxbxxxQy 110)(令令011 a是是特特征征方方程程的的根根,即即综上讨论综上讨论,设设)(xQxynkx 是特征方程的根是特征方程的根不是特征方程的根不是特征方程的根1110k解解.32321的的通通解解求求差差分分方方程程例例xyyxx 对应齐次方程通解对应齐次方程通解特征方程特征方程,02 特征根特征根,2 xxCY2 不不是是特特征征方方程程的的根根,1,设设C
19、BxAxyx 2代入方程代入方程, 得得963 CBA,9632 xxyx于于是是原方程通解为原方程通解为. 96322 xxCyxx例例 4 4 求差分方程求差分方程37, 3501 yyyxx的特解的特解 解解,543xxCy 方方程程的的通通解解为为12374337370 Cy代代入入,则则将将.4351237 xxy故故方方程程的的特特解解对应齐次方程通解对应齐次方程通解xxCY5 不是特征方程的根,不是特征方程的根,1,设设Ayx 代入方程代入方程, 得得,43 A解解 .44Cxyx 方方程程的的通通解解为为.1简简单单的的方方式式求求解解这这类类方方程程可可用用另另一一种种较较是
20、是特特征征方方程程的的根根,.235231的的通通解解求求差差分分方方程程例例xxxyyxx ,右右边边为为方方程程左左边边为为xy 2323223 xxxxxx 21 xxx 3x 3xyx 故故 型型xpxfnx )(2. 101, 1类型类型 102, xxxzy 设设代入方程得代入方程得 为为方方程程 2 xpayynxxx 1 xpzaznxxxxx 11 xpazznxxx 1 ,即即得得消消去去1类型类型. xxxzy 于于是是日常的经济问题中的差分方程模型日常的经济问题中的差分方程模型 假如你在银行开设了一个假如你在银行开设了一个1000元的存款账户,银行的年利元的存款账户,银
21、行的年利率为率为7%. 用用an表示表示n年后你账户上的存款额,那么下面的数列年后你账户上的存款额,那么下面的数列就是你每年的存款额:就是你每年的存款额: a0, a1, a2, a3, , an, 设设r为年利率,由于为年利率,由于an+1=an+r an, 因此存款问题的数学模型因此存款问题的数学模型是:是: a0=1000, an+1=(1+r)an, n=1,2,3, 从从1994年开始,我国逐步实行了大学收费制度年开始,我国逐步实行了大学收费制度. 为了保障子女为了保障子女将来的教育费用,小张夫妇从他们的儿子出生时开始,每年向将来的教育费用,小张夫妇从他们的儿子出生时开始,每年向银行
22、存入银行存入x元作为家庭教育基金元作为家庭教育基金. 若银行的年利率为若银行的年利率为r,试写出第,试写出第n年后教育基金总额的表达式年后教育基金总额的表达式. 预计当子女预计当子女18岁入大学时所需的岁入大学时所需的费用为费用为100000元,按年利率元,按年利率3%计算,小张夫妇每年应向银行存计算,小张夫妇每年应向银行存入多少元入多少元? 设设n年后教育基金总额为年后教育基金总额为an,每年向银行存入,每年向银行存入x元,依据复利元,依据复利率计算公式,得到家庭教育基金的数学模型为:率计算公式,得到家庭教育基金的数学模型为: a0=x, an+1=(1+r)an+x, n=0,1,2,3,
23、 由由 a0=x, an+1=(1+r)an+x, n=0,1,2,3, 得通解得通解: 将将 a0=x, =1+r, b=x 代入代入, 得得 c =x(1+r)/r, 因此方程的特解因此方程的特解是是:1bcannnnnnarrxrrxa1)1 (,1)1 (11 将将 a18=100000,r=0.03 代入计算出代入计算出 x=3981.39. 小李夫妇要购买二居室住房一套,共需小李夫妇要购买二居室住房一套,共需30万元万元. 他们已经筹他们已经筹集集10万元,另外万元,另外20万元申请抵押贷款万元申请抵押贷款. 若贷款月利率为若贷款月利率为0.6%,还贷期限为还贷期限为20年,问小李
24、夫妇每月要还多少钱?年,问小李夫妇每月要还多少钱? 设贷款额为设贷款额为a0,每月还贷额为,每月还贷额为x,月利率为,月利率为r,第,第n个月后的欠个月后的欠款额为款额为an,则,则 a0=200000, a1=(1+r)a0-x, a2=(1+r)a1-x, an=(1+r)an-1-x, n=1,2,3, 由由 a0=200000, an+1=(1+r)an-x, n=0,1,2,3,将将 =1+r, b=-x 代入得到方程的特解代入得到方程的特解:rrxraannn1)1 ()1 (0 若在第若在第N个月还清贷款,令个月还清贷款,令 aN=0, 得得:1)1 ()1 (0NNrrrax
25、将将 a0=200000, r =0.006, N=20*12=240 代入计算出代入计算出 x=1574.70 小王看到一则广告:商场对电脑实行分期付款销售小王看到一则广告:商场对电脑实行分期付款销售. 一台售一台售价价8000元的电脑,可分元的电脑,可分36个月付款,每月付个月付款,每月付300元即可元即可. 同时他同时他收到了银行提供消费贷款的消息:收到了银行提供消费贷款的消息:10000元以下的贷款,可在三元以下的贷款,可在三年内还清,年利率为年内还清,年利率为15%. 那么,他买电脑应该向银行贷款,还那么,他买电脑应该向银行贷款,还是直接向商店分期付款?是直接向商店分期付款? 经过分
展开阅读全文