微生物反应器操作.课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《微生物反应器操作.课件.ppt》由用户(三亚风情)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 微生物 反应器 操作 课件
- 资源描述:
-
1、第四章第四章微生物反应器操作微生物反应器操作主要内容主要内容 1 1、微生物反应器操作基础、微生物反应器操作基础 2 2、分批操作、分批操作 3 3、流加操作、流加操作 4 4、连续操作、连续操作4.1 4.1 微生物反应器操作基础微生物反应器操作基础n微生物培养过程根据是否要求供氧,分为微生物培养过程根据是否要求供氧,分为厌氧和好氧培养厌氧和好氧培养 。好氧培养可采用以下几种方法:好氧培养可采用以下几种方法:(1 1)液体表面培养(如使用浅盘);)液体表面培养(如使用浅盘);(2 2)通风固态发酵;)通风固态发酵;(3 3)通氧深层培养。)通氧深层培养。 深层培养深层培养培养方式分类:培养方
2、式分类:n分批式操作分批式操作(batch operation)n半分批式操作半分批式操作(semi-batch operation)n反复分批式操作反复分批式操作(repeated batch operation)n反复半分批式操作反复半分批式操作(repeated semi-batch operation)n连续式操作连续式操作(continuous operation) 4.2 4.2 分批式操作分批式操作 n是指基质一次性加入反应器内,在适宜是指基质一次性加入反应器内,在适宜条件下将微生物菌种接入,反应完成后条件下将微生物菌种接入,反应完成后将全部反应物料取出的操作方式。将全部反应物料
3、取出的操作方式。培养过程中基质体积变化培养过程中基质体积变化n半分批式操作半分批式操作 又称流加操作,是指先将一定量基质又称流加操作,是指先将一定量基质加入反应器内,在适宜条件下将微生物菌加入反应器内,在适宜条件下将微生物菌种接入反应器中,反应开始,反应过程中种接入反应器中,反应开始,反应过程中将特定的限制性基质按照一定要求加入到将特定的限制性基质按照一定要求加入到反应器内,以控制限制性基质保持一定,反应器内,以控制限制性基质保持一定,当反应终止时取出反应物料的操作方式当反应终止时取出反应物料的操作方式 。n酵母、淀粉酶、某些氨基酸和抗生素等采酵母、淀粉酶、某些氨基酸和抗生素等采用这种方式进行
4、生产。用这种方式进行生产。 反复分批式操作是指分批操作完成后,反复分批式操作是指分批操作完成后,不全部取出反应物料,剩余部分重新加入一不全部取出反应物料,剩余部分重新加入一定量的基质,再按照分批式操作方式,反复定量的基质,再按照分批式操作方式,反复进行。其培养过程中基质体积变化曲线如图进行。其培养过程中基质体积变化曲线如图4-1c4-1c所示所示 。 反复半分批式操作是指流加操作完成后,反复半分批式操作是指流加操作完成后,不全部取出反应物料,剩余部分重新加入一不全部取出反应物料,剩余部分重新加入一定量的基质,再按照流加操作方式进行,反定量的基质,再按照流加操作方式进行,反复进行。其培养过程中基
5、质体积变化曲线如复进行。其培养过程中基质体积变化曲线如图图4-1d4-1d所示。所示。 连续式操作是指在分批式操作进行到一定连续式操作是指在分批式操作进行到一定阶段,一方面将基质连续不断地加入反应器内,阶段,一方面将基质连续不断地加入反应器内,另一方面又把反应物料连续不断的取出,使反另一方面又把反应物料连续不断的取出,使反应条件(如反应液体积等)不随时间变化的操应条件(如反应液体积等)不随时间变化的操作方式。活性污泥法处理废水、固定化微生物作方式。活性污泥法处理废水、固定化微生物反应等多采用连续式操作。连续培养过程中基反应等多采用连续式操作。连续培养过程中基质体积变化曲线如图质体积变化曲线如图
6、4-1e 4-1e 所示。所示。优点不足应用的场合分分批式操作设备制作费用低;同一设备可进行多种产品生产;高收率(若能对培养过程了解的深入);发生杂菌污染或菌种变异的几率低。反应器的非生产周期较长;由于频繁杀菌,易使检测装置损伤;由于每次培养均要接种,增加了生产成本;需要非稳定过程控制费用;人员操作加大了污染的危险。进行少量产品生产;使用同一种反应器,进行多种产物生产;易发生杂菌污染或菌种变异从培养液中提取产物采取分批式操作。流流加式操作高通融性;可任意控制反应器中的基质浓度;可确保微生物所需的环境;如果能够了解菌体在分批过程中的性质,可获得产物高收率。有反应器的非生产周期;需要较高的劳动力(
7、需要控制和高价的检测装置);人员的操作加大了污染的危险;由于频繁杀菌,易使检测装置损伤。不能进行连续式操作;分批操作生产效率低;希望延长反应时间;出现基质抑制;使用营养要求变异株一定培养基成分的浓度是菌体收率或代谢产物生产速度的影响因素;需要高菌体浓度。连连续式操作易机械化、自动化;节约劳动力;反应器体积小(由于无非生产准备时间);可确保产品品质稳定;由于机械化操作,减少了操作人员的操作带来的污染;几乎没有因杀菌,使检测装置损伤的可能。通融性低(同一装置不能生产多种产品);需要原料的品质均一;设备投资高(控制、自动化等操作具有一定难度);长时间培养,增加了杂菌污染或菌种变异的几率;反应器内保持
8、醪液的恒定,有一定困难(由于产生气泡、丝状菌堵塞管路等)。需生产速率高的场合(对于同一品质,大量生产的产品);基质是气体、液体和可溶性固体;不易发生杂菌污染或菌种变异。分批式操作特点分批式操作特点4.2.1 4.2.1 生长曲线生长曲线 分批培养中微生物的生长曲线如图分批培养中微生物的生长曲线如图4-24-2。随培养的进行,基质浓度下降,菌体量增加,随培养的进行,基质浓度下降,菌体量增加,产物量相应增加。分批式培养过程中,微生物产物量相应增加。分批式培养过程中,微生物的生长可分为:的生长可分为:1 1、迟缓期、迟缓期(lag phase);2 2、对数生长期、对数生长期(lagarithmic
9、 growth phase););3 3、减速期、减速期(fransient phase);4 4、静止期、静止期(stationary phase); 5 5、衰退期、衰退期(decline phase)5 5个阶段。个阶段。分批式培养中微生物的生长曲线分批式培养中微生物的生长曲线4.2.2 4.2.2 状态方程式状态方程式 分批式培养过程的状态方程式(环境过程的分批式培养过程的状态方程式(环境过程的状态方程式)可表示为:状态方程式)可表示为:基质:基质:dS/dt=-yXdS/dt=-yX菌体:菌体:dX/dtdX/dt=X X产物:产物:dP/dtdP/dt=X=X氧:氧:COCO2 2
10、:outcooutoalloutoincoinoallinooPPPPPPPPVFXQOUR2222222incoinoallincooutcooutoalloutcocoPPPPPPPPVFXQCER2222222当当t=0t=0时时; 0;000PXXSS02202200)(;)(;cocoooQQQQ上式中,上式中, F F为惰性气体流速,为惰性气体流速, V V为反应液总容积,为反应液总容积, PallPall为气体总压力,为气体总压力, (Po2)out(Po2)out为排气中氧的分压,为排气中氧的分压, (Po2)in(Po2)in为进气体中氧的分压,为进气体中氧的分压, (Pco
11、2)in(Pco2)in为进气体中为进气体中C02C02的分压,的分压, (Pco2)out(Pco2)out为排气中为排气中CO2CO2的分压。的分压。 一般微生物的最适温度、最适一般微生物的最适温度、最适pHpH的范围较窄。的范围较窄。例 如 ,例 如 , C a l a mC a l a m 等 人 研 究 了 温 度 对 产 黄 青 霉等 人 研 究 了 温 度 对 产 黄 青 霉(Penicillum chrysogenumPenicillum chrysogenum)生长速率和青霉素)生长速率和青霉素生成速率的影响,发现最适生长温度为生成速率的影响,发现最适生长温度为3030,进,
12、进行呼吸的最适温度为行呼吸的最适温度为21.721.728.628.6,产物青霉素,产物青霉素的最适生成温度为的最适生成温度为24.724.7。生产中一般采用定值。生产中一般采用定值控制。在这样的条件下,可以认为分批培养过程控制。在这样的条件下,可以认为分批培养过程中的动态特性取决于基质与微生物浓度(接种量)中的动态特性取决于基质与微生物浓度(接种量)及微生物反应的诸比速率的初始值,因此,支配及微生物反应的诸比速率的初始值,因此,支配分批式培养统的主要因素是基质与微生物的浓度分批式培养统的主要因素是基质与微生物的浓度的初始值。的初始值。 分批式微生物反应过程分析中,需观察分批式微生物反应过程分
13、析中,需观察X X,S S和和P P等随时间的变化情况。由于不可能研究所有反应液等随时间的变化情况。由于不可能研究所有反应液成分随时间的变化,因此应选择与产物成分随时间的变化,因此应选择与产物P P关系最为密关系最为密切的底物切的底物S S作为观察的对象。必要时,可观察两种基作为观察的对象。必要时,可观察两种基质浓度的变化。好氧反应中,溶解氧浓度(质浓度的变化。好氧反应中,溶解氧浓度(DODO)随)随时间的变化也是很重要的参数。时间的变化也是很重要的参数。 4.2.3 4.2.3 反复分批操作反复分批操作 反复分批操作系统(图反复分批操作系统(图4-34-3)中培养液)中培养液体积为体积为V
14、V,培养液取出率为,滤液取出率为,培养液取出率为,滤液取出率为,由于由于V V一定,所以培养液加入量为。为确保一定,所以培养液加入量为。为确保菌体初始浓度一定,有必要将流出液中部分菌体初始浓度一定,有必要将流出液中部分含菌体的培养液取出,此时菌体量的衡算式含菌体的培养液取出,此时菌体量的衡算式为:为:VXVXVXffi反复分批操作示意图反复分批操作示意图由上式可知由上式可知 产物浓度的衡算为产物浓度的衡算为由上式,滤液取出率为由上式,滤液取出率为fiXX1VPVPVPVPfffifififiPPXXPP1产物的生产能力产物的生产能力 由上式可知,为提高产物生产能力,可采取提由上式可知,为提高产
15、物生产能力,可采取提高或减少高或减少t tRBRB。RBfRBifRBtPtPPP4.3 4.3 流加操作流加操作 流加操作的优点是能够任意控制反应液中流加操作的优点是能够任意控制反应液中基质浓度。基质浓度。 流加操作的要点是控制基质浓度,因此,流加操作的要点是控制基质浓度,因此,其核心问题是流加什么和怎么流加。在工程上其核心问题是流加什么和怎么流加。在工程上特别要注意后者。从流加方式看,流加操作可特别要注意后者。从流加方式看,流加操作可分为无反馈控制流加操作与反馈控制流加操作。分为无反馈控制流加操作与反馈控制流加操作。前者包括定流量流加、指数流加和反馈控制流前者包括定流量流加、指数流加和反馈
16、控制流加操作等。后者分间接控制、直接控制、定值加操作等。后者分间接控制、直接控制、定值控制和程序控制等流加操作。控制和程序控制等流加操作。 流加培养操作流加培养操作 流加操作时,特定基质加入到反应器后,流加操作时,特定基质加入到反应器后,反应液体积就会发生变化,这时反应液体积就会发生变化,这时、和和的可的可定义如下:定义如下: 式中,式中,V V为反应液体积,为反应液体积,F F是体积流量,是体积流量,S Sinin是流是流加液中的基质浓度,加液中的基质浓度,FSFSinin为基质的质量流量。为基质的质量流量。 dtXVdXV)(1dtVSdFSXVin)(1dtVPdVX)(14.3.1 4
17、.3.1 无反馈控制的流加操作无反馈控制的流加操作 采用这种操作方式时,基质的流加按预先设采用这种操作方式时,基质的流加按预先设置好的条件进行。因此,表达系统的数学模型是置好的条件进行。因此,表达系统的数学模型是否正确成为反应成败的关键。最简单的微生物的否正确成为反应成败的关键。最简单的微生物的生长速率为生长速率为VXdtVXd)(作为流加基质的平衡式,有作为流加基质的平衡式,有mVXdtVXdYFSdtVSdSXin)(1)(反应液体积变化的方程式为反应液体积变化的方程式为vapKFdtdV 式中,式中,K Kvapvap为单位时间里由于通气,随排出气为单位时间里由于通气,随排出气体而失去的
18、水分。体而失去的水分。如果流加的基质能够迅速并完如果流加的基质能够迅速并完全为菌体所消耗,并且维持代谢为零时,可得到全为菌体所消耗,并且维持代谢为零时,可得到最大的菌体浓度最大的菌体浓度X Xmaxmax。由于基质流加量与基质消耗。由于基质流加量与基质消耗量相等,可认为,这样由量相等,可认为,这样由流加基质的平衡式流加基质的平衡式有有 XYSVFSXin1对于所供给基质的浓度,菌体浓度近似一定,即对于所供给基质的浓度,菌体浓度近似一定,即dX/dtdX/dt=0=0时。由上式,可认为(时。由上式,可认为(D D稀释率)。稀释率)。 一、一、定流量流加操作定流量流加操作 定流量流加操作是指基质的
19、流加速度保持一定定流量流加操作是指基质的流加速度保持一定的流加操作。此时。时间时,由菌体的恒算式的流加操作。此时。时间时,由菌体的恒算式0000)(VXSVtFSYXVinSX可知,时间可知,时间t t时的菌体浓度为时的菌体浓度为 0000)(VFtXSYVtFSYXSXinSX这种流加方式的最大特点是微生物进行线型生长这种流加方式的最大特点是微生物进行线型生长(linear growthlinear growth),即),即 式中式中K KL L是线性生长速率常数。一般,在线性生长阶是线性生长速率常数。一般,在线性生长阶段,基质浓度相当低。段,基质浓度相当低。 (一定)LKdtVXd)(二、
展开阅读全文