书签 分享 收藏 举报 版权申诉 / 75
上传文档赚钱

类型典型相关分析课件.ppt

  • 上传人(卖家):三亚风情
  • 文档编号:2923520
  • 上传时间:2022-06-11
  • 格式:PPT
  • 页数:75
  • 大小:2.18MB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《典型相关分析课件.ppt》由用户(三亚风情)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    典型 相关 分析 课件
    资源描述:

    1、第九章第九章 典型相关分析典型相关分析 第一节第一节 引言引言 第二节第二节 典型相关的基本理论典型相关的基本理论 第三节第三节 样本典型相关分析样本典型相关分析 第四节第四节 典型相关分析应用中的几典型相关分析应用中的几 个问题个问题 第五节第五节 实例分析与计算实现实例分析与计算实现 第一节第一节 引言引言n典型相关分析(典型相关分析(Canonical Correlation)是研究两组变量之)是研究两组变量之间相关关系的一种多元统计方法。它能够揭示出两组变量之间相关关系的一种多元统计方法。它能够揭示出两组变量之间的内在联系。间的内在联系。n我们知道,在一元统计分析中,用相关系数来衡量两

    2、个随机我们知道,在一元统计分析中,用相关系数来衡量两个随机变量之间的线性相关关系;用复相关系数研究一个随机变量变量之间的线性相关关系;用复相关系数研究一个随机变量和多个随机变量的线性相关关系。然而,这些统计方法在研和多个随机变量的线性相关关系。然而,这些统计方法在研究两组变量之间的相关关系时却无能为力。究两组变量之间的相关关系时却无能为力。n比如要研究生理指标与训练指标的关系,居民生活环境与健比如要研究生理指标与训练指标的关系,居民生活环境与健康状况的关系,人口统计变量(户主年龄、家庭年收入、户康状况的关系,人口统计变量(户主年龄、家庭年收入、户主受教育程度)与消费变量(每年去餐馆就餐的频率、

    3、每年主受教育程度)与消费变量(每年去餐馆就餐的频率、每年出外看电影的频率)之间是否具有相关关系?阅读能力变量出外看电影的频率)之间是否具有相关关系?阅读能力变量(阅读速度、阅读才能)与数学运算能力变量(数学运算速(阅读速度、阅读才能)与数学运算能力变量(数学运算速度、数学运算才能)是否相关?这些多变量间的相关性如何度、数学运算才能)是否相关?这些多变量间的相关性如何分析?分析? n1936年霍特林(年霍特林(Hotelling)最早就)最早就“大学表现大学表现”和和“入学前入学前成绩成绩”的关系、政府政策变量与经济目标变量的关系等问题的关系、政府政策变量与经济目标变量的关系等问题进行了研究,提

    4、出了典型相关分析技术。之后,进行了研究,提出了典型相关分析技术。之后,Cooley和和Hohnes(1971),Tatsuoka(1971)及及Mardia,Kent和和Bibby(1979)等人对典型相关分析的应用进行了讨论,等人对典型相关分析的应用进行了讨论,Kshirsagar(1972)则从理论上给出了最好的分析。则从理论上给出了最好的分析。 n典型相关分析的目的是识别并量化两组变量之间的联系,将典型相关分析的目的是识别并量化两组变量之间的联系,将两组变量相关关系的分析,转化为一组变量的线性组合与另两组变量相关关系的分析,转化为一组变量的线性组合与另一组变量线性组合之间的相关关系分析。

    5、一组变量线性组合之间的相关关系分析。n目前,典型相关分析已被应用于心理学、市场营销等领域。目前,典型相关分析已被应用于心理学、市场营销等领域。如用于研究个人性格与职业兴趣的关系,市场促销活动与消如用于研究个人性格与职业兴趣的关系,市场促销活动与消费者响应之间的关系等问题的分析研究。费者响应之间的关系等问题的分析研究。 第二节第二节 典型相关的基本理论典型相关的基本理论 一一 典型相关分析的基本思想典型相关分析的基本思想 二二 典型相关分析原理及方法典型相关分析原理及方法 一、典型相关分析的基本思想一、典型相关分析的基本思想n典型相关分析由典型相关分析由Hotelling提出,其基本思想和主成分

    6、分析非提出,其基本思想和主成分分析非常相似。首先在每组变量中找出变量的线性组合,使得两组常相似。首先在每组变量中找出变量的线性组合,使得两组的线性组合之间具有最大的相关系数。然后选取和最初挑选的线性组合之间具有最大的相关系数。然后选取和最初挑选的这对线性组合不相关的线性组合,使其配对,并选取相关的这对线性组合不相关的线性组合,使其配对,并选取相关系数最大的一对,如此继续下去,直到两组变量之间的相关系数最大的一对,如此继续下去,直到两组变量之间的相关性被提取完毕为此。被选出的线性组合配对称为性被提取完毕为此。被选出的线性组合配对称为典型变量典型变量,它们的相关系数称为它们的相关系数称为典型相关系

    7、数典型相关系数。典型相关系数度量了这。典型相关系数度量了这两组变量之间联系的强度。两组变量之间联系的强度。n一般情况,设一般情况,设是两个相互关联的随机向量,分别在两组变量中选取若干有是两个相互关联的随机向量,分别在两组变量中选取若干有代表性的综合变量代表性的综合变量Ui、Vi,使得每一个综合变量是原变量的,使得每一个综合变量是原变量的线性组合,即线性组合,即 n 二、典型相关分析原理及方法二、典型相关分析原理及方法n n n n n n n n n n n n n n 第三节第三节 样本典型相关分析样本典型相关分析一一 样本典型相关变量及典型相关系数的计算样本典型相关变量及典型相关系数的计算

    8、 二二 典型相关系数的显著性检验典型相关系数的显著性检验 一、样本典型相关变量及典型相关系一、样本典型相关变量及典型相关系数的计算数的计算n n n n n n 二、典型相关系数的显著性检验二、典型相关系数的显著性检验n n n n n n nn【例例9.1】康复俱乐部对康复俱乐部对20名中年人测量了三个生理指标:名中年人测量了三个生理指标:体重体重(x1),腰围腰围(x2),脉搏,脉搏(x3);三个训练指标:引体向上次数;三个训练指标:引体向上次数(y1),起坐次数,起坐次数(y2),跳跃次数,跳跃次数(y3)。分析生理指标与训练指。分析生理指标与训练指标的相关性。数据详见表标的相关性。数据

    9、详见表9.1。 表表9.1 康复俱乐部数据康复俱乐部数据n n n n 第四节第四节 典型相关分析应用中的典型相关分析应用中的 几个问题几个问题一一 从相关矩阵出发计算典型相关从相关矩阵出发计算典型相关 二二 典型载荷分析典型载荷分析 三三 典型冗余分析典型冗余分析 一、从相关矩阵出发计算典型相关一、从相关矩阵出发计算典型相关n典型相关分析涉及多个变量,不同的变量往往具有不同的量典型相关分析涉及多个变量,不同的变量往往具有不同的量纲及不同的数量级别。在进行典型相关分析时,由于典型变纲及不同的数量级别。在进行典型相关分析时,由于典型变量是原始变量的线性组合,具有不同量纲变量的线性组合显量是原始变

    10、量的线性组合,具有不同量纲变量的线性组合显然失去了实际意义。其次,不同的数量级别会导致然失去了实际意义。其次,不同的数量级别会导致“以大吃以大吃小小”,即数量级别小的变量的影响会被忽略,从而影响了分,即数量级别小的变量的影响会被忽略,从而影响了分析结果的合理性。因此,为了消除量纲和数量级别的影响,析结果的合理性。因此,为了消除量纲和数量级别的影响,必须对数据先做标准化变换处理,然后再做典型相关分析。必须对数据先做标准化变换处理,然后再做典型相关分析。显然,经标准化变换之后的协差阵就是相关系数矩阵,因而,显然,经标准化变换之后的协差阵就是相关系数矩阵,因而,也即通常应从相关矩阵出发进行典型相关分

    11、析。也即通常应从相关矩阵出发进行典型相关分析。n【例例9.2】对于例对于例9.1从相关系数矩阵出发进行典型相关分析。从相关系数矩阵出发进行典型相关分析。 二、典型载荷分析二、典型载荷分析n n n以上结果说明生理指标的第一典型变量与体重的相关系数为以上结果说明生理指标的第一典型变量与体重的相关系数为-0.621,与腰围的相关系数为,与腰围的相关系数为-0.925,与脉搏的相关系数为,与脉搏的相关系数为0.333。从另一方面说明生理指标的第一对典型变量与体重、。从另一方面说明生理指标的第一对典型变量与体重、腰围负相关,而与脉搏正相关。其中与腰围的相关性最强。腰围负相关,而与脉搏正相关。其中与腰围

    12、的相关性最强。第一对典型变量主要反映了体形的胖瘦。第一对典型变量主要反映了体形的胖瘦。 三、典型冗余分析三、典型冗余分析n n n n 前前2个典型变量解释的方差比例个典型变量解释的方差比例0.451+0.2460.697n同样的方法可求得训练指标样本方差由自身同样的方法可求得训练指标样本方差由自身3个典型变量解个典型变量解释的方差比例分别为:释的方差比例分别为:0.408、0.434、0.157。 第五节第五节 实例分析与计算实现实例分析与计算实现一一 利用利用SPSS进行典型相关分析实例进行典型相关分析实例1 二二 利用利用SPSS进行典型相关分析实例进行典型相关分析实例2 一、利用一、利

    13、用SPSS进行典型相关分析进行典型相关分析实例实例1n测量测量15名受试者的身体形态以及健康情况指标,如名受试者的身体形态以及健康情况指标,如9.2表。表。第一组是身体形态变量,有年龄、体重、胸围和日抽烟量;第一组是身体形态变量,有年龄、体重、胸围和日抽烟量;第二组是健康状况变量,有脉搏、收缩压和舒张压。要求测第二组是健康状况变量,有脉搏、收缩压和舒张压。要求测量身体形态以及健康状况这两组变量之间的关系。量身体形态以及健康状况这两组变量之间的关系。 表表9.2 两组身体素质的典型变量两组身体素质的典型变量 (一)操作步骤(一)操作步骤n在在SPSS中没有提供典型相关分析的专门菜单项,要想利用中

    14、没有提供典型相关分析的专门菜单项,要想利用SPSS实现典型相关分析,必须在语句窗口中调用实现典型相关分析,必须在语句窗口中调用SPSS的的 Canonical correlation.sps 宏。具体方法如下:宏。具体方法如下:1. 按按FileNewSyntax的顺序新建一个语句窗口。在语句的顺序新建一个语句窗口。在语句 窗口中输入下面的语句:(图窗口中输入下面的语句:(图9.1)(注意全路径,否则把)(注意全路径,否则把sps文件放到当前工作目录文件放到当前工作目录 编辑编辑-选项选项-文件位置)文件位置)INCLUDE C:Program FilesIBMSPSSStatistics22

    15、SamplesSimplified ChineseCanonical correlation.sps.CANCORR SET1=x1 x2 x3 x4 /SET2=y1 y2 y3 / . 2. 点击语句窗口点击语句窗口Run菜单中的菜单中的All子菜单项,运行典型相关宏子菜单项,运行典型相关宏命令,得出结果。命令,得出结果。 图图9.1 语句窗口语句窗口 (二)主要运行结果解释(二)主要运行结果解释1. Correlations for Set-1、Correlations for Set-2、Correlations Between Set-1 and Set-2(分别给出两组变量内(分别

    16、给出两组变量内部以及两组变量之间的相关系数矩阵)部以及两组变量之间的相关系数矩阵)2. Canonical Correlations(给出典型相关系数)(给出典型相关系数)从表从表9.3中可以看出第一典型相关系数达到中可以看出第一典型相关系数达到0.957,第二典型相,第二典型相关系数为关系数为0.582,第三典型相关系数为,第三典型相关系数为0.180。 表表9.3 典型相关系数典型相关系数 3. Test that remaining correlations are zero(给出典型相关(给出典型相关的显著性检验)的显著性检验)表表9.4中从左至右分别为中从左至右分别为Wilks的统计

    17、量、卡方统计量、自由度的统计量、卡方统计量、自由度和伴随概率。从表中可以看出,在和伴随概率。从表中可以看出,在0.05的显著性水平下,三对的显著性水平下,三对典型变量中只有第一对典型相关是显著的。典型变量中只有第一对典型相关是显著的。 表表9.4 典型相关系数的显著性检验典型相关系数的显著性检验n 表表9.5 两组典型变量的标准化系数两组典型变量的标准化系数 由于由于Y1(脉搏)的系数(脉搏)的系数-0.721绝对值最大,说明健康状况的典绝对值最大,说明健康状况的典型变量主要由脉搏所决定。型变量主要由脉搏所决定。同时,由于两个典型变量中抽烟量和脉搏的系数是同号的(都同时,由于两个典型变量中抽烟

    18、量和脉搏的系数是同号的(都为负),反映抽烟量和脉搏的正相关,即日抽烟越多则每分钟为负),反映抽烟量和脉搏的正相关,即日抽烟越多则每分钟的脉搏跳动次数也越多。抽烟对身体健康有害,这和客观事实的脉搏跳动次数也越多。抽烟对身体健康有害,这和客观事实是相符的。是相符的。 n6. Redundancy Analysis(分别给出两组典型变量的冗余分(分别给出两组典型变量的冗余分析)析)表表9.6中给出的四组数据分别是身体形态变量被自身的典型变中给出的四组数据分别是身体形态变量被自身的典型变量解释的方差比例、身体形态变量被健康状况的典型变量解释量解释的方差比例、身体形态变量被健康状况的典型变量解释的方差比

    19、例、健康状况变量被自身的典型变量解释的方差比例的方差比例、健康状况变量被自身的典型变量解释的方差比例和健康状况变量被身体形态的典型变量解释的方差比例。和健康状况变量被身体形态的典型变量解释的方差比例。 表表9.6 典型冗余分析典型冗余分析 二、利用二、利用SPSS进行典型相关分析进行典型相关分析实例实例2n利用利用SPSS软件对软件对C.R.Rao(1952)关于典型相关的经典例子)关于典型相关的经典例子进行分析。表进行分析。表9.7列举了列举了25个家庭的成年长子和次子的头长个家庭的成年长子和次子的头长和头宽。利用典型相关分析法分析长子和次子头型的相关性。和头宽。利用典型相关分析法分析长子和

    20、次子头型的相关性。(一)操作步骤(一)操作步骤1. 按按FileNewSyntax的顺序新建一个语句窗口。在语句的顺序新建一个语句窗口。在语句窗口中输入下面的语句:窗口中输入下面的语句: INCLUDE C:Program FilesIBMSPSSStatistics22SamplesSimplified ChineseCanonical correlation.sps.CANCORR SET1=x1 x2 /SET2=y1 y2 / .2. 点击语句窗口点击语句窗口Run菜单中的菜单中的All子菜单项,运行典型相关宏子菜单项,运行典型相关宏命令,得出结果。命令,得出结果。 表表9.7 长子和

    21、次子的头长与头宽长子和次子的头长与头宽 (二)主要运行结果解释(二)主要运行结果解释1. 典型相关系数和典型相关的显著性检验(表典型相关系数和典型相关的显著性检验(表9.8、表、表9.9)从表二可以看出,两队典型变量中,第一对的典型相关系数达从表二可以看出,两队典型变量中,第一对的典型相关系数达到到0.788,属于强相关,而第二对典型变量的相关则比较弱。,属于强相关,而第二对典型变量的相关则比较弱。这一点从表这一点从表3可以更清楚的看到。显著性检验的结果表明,在可以更清楚的看到。显著性检验的结果表明,在0.05的显著性水平下,只有第一对典型相关是显著的。的显著性水平下,只有第一对典型相关是显著的。 表表9.8 典型相关系数典型相关系数表表9.9 典型相关的显著性检验典型相关的显著性检验 3. 冗余分析冗余分析从表从表9.11可以看到,长子的头型变量被自身的第一典型变量解可以看到,长子的头型变量被自身的第一典型变量解释了释了86.7%,次子的头型变量被自身的第一典型变量解释了,次子的头型变量被自身的第一典型变量解释了91.8%。 表表9.10 两组典型变量的未标准化系数两组典型变量的未标准化系数 表表9.11 冗余分析冗余分析本章结束本章结束

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:典型相关分析课件.ppt
    链接地址:https://www.163wenku.com/p-2923520.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库