电路分析基础13-电路方程的矩阵形式课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《电路分析基础13-电路方程的矩阵形式课件.ppt》由用户(三亚风情)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 电路 分析 基础 13 方程 矩阵 形式 课件
- 资源描述:
-
1、第第13章章 电路方程的矩阵形式电路方程的矩阵形式( )13.1 割集割集13.2 关联矩阵、割集矩阵、回路矩阵关联矩阵、割集矩阵、回路矩阵13.3 回路电流方程的矩阵形式回路电流方程的矩阵形式13.4 节节点电压方程的矩阵形式点电压方程的矩阵形式13.5 割集电压方程的矩阵形式割集电压方程的矩阵形式13.6 状态方程状态方程13.7 应用实例应用实例 计算机辅助电路分析计算机辅助电路分析 ( ,),)( ,),)13.1 割集割集 割集割集Q是是连通图连通图G中支路的集合,具有下述性质:中支路的集合,具有下述性质: 1.把把Q中全部支路移去中全部支路移去( (保留支路的两个端点保留支路的两个
2、端点) ) ,将图,将图 分成两个分离部分。分成两个分离部分。 2.保留保留Q 中的一条支路,其余都移去,中的一条支路,其余都移去, G还是连通的。还是连通的。432156134256Q1: 2 , 5 , 4 , 6 一、割集定义一、割集定义二、割集的确定二、割集的确定 在图在图G上作一个高斯面(闭合面),使其包围上作一个高斯面(闭合面),使其包围G的的某某些节点些节点,而每条支路只能被闭合面切割一次,去掉,而每条支路只能被闭合面切割一次,去掉与闭与闭合面相切割的支路,图合面相切割的支路,图G将被分为两部分,那么将被分为两部分,那么这组支这组支路路集合即为图集合即为图G的一个割集。在图的一个
3、割集。在图G上画高斯上画高斯面面(闭合(闭合面)面)Q1、Q2、Q3如下图所示,对应割集如下图所示,对应割集Q1、Q2、Q3的支的支路集合路集合为为1,5,2、1,5,3,6、2,5,4,6。 注意:同一割集中每一条支路只能被切割一次。注意:同一割集中每一条支路只能被切割一次。1Q1Q2Q323465图图13-1 割集的定义割集的定义245(b)15(c)12345(a)(d)234512345(f)Q1Q2Q3Q4Q5Q6125(e)三、基本割集三、基本割集 888(a)1234567(c)1234567(b)1234567(d)12345678(e)12345678(f)12345678
4、由一条树支及相应的连支构成的割集称为单树支割集或基本由一条树支及相应的连支构成的割集称为单树支割集或基本割集。割集。n个节点,个节点,b条支路的连通图条支路的连通图G,独立割集的数目为,独立割集的数目为(n1)。 思思 考考 与与 练练 习习1.割集必须满割集必须满足的条件是足的条件是什么?什么? 2.如何选如何选择基本择基本割集?割集? 3.割集和节割集和节点的关系是点的关系是什么?什么? 4.属于同一割集的属于同一割集的所有支路的电流所有支路的电流是否满足是否满足KCL? 图的矩阵表示是指图的矩阵表示是指用矩阵描述图的拓扑性质,用矩阵描述图的拓扑性质,即即KCL和和KVL的矩阵形式。有三种
5、矩阵形式:的矩阵形式。有三种矩阵形式:图的矩阵表示图的矩阵表示: :节点节点支路支路关联矩阵关联矩阵 回路回路支路支路回路矩阵回路矩阵割集割集支路支路 割集矩阵割集矩阵 13.2 关联矩阵、割集矩阵、回路矩阵关联矩阵、割集矩阵、回路矩阵ajk = 1 有向支路有向支路 k 背离背离 j 节点。节点。 - -1 有向支路有向支路 k指向指向 j 节点。节点。 0 有向支路有向支路 k 与与 j 节点节点无关。无关。1.关联矩阵:关联矩阵: Aa=ajkn b节点数节点数 支路数支路数 643521Aa=1234 1 2 3 4 5 6 支支节节 1 0 0 - -1 0 1 - -1 - -1
6、1 0 0 0 0 1 0 0 - -1 - -1 0 0 -1 1 1 0设为参考节点,划去设为参考节点,划去第第4行。行。 - -1 - -1 1 0 0 0A=123 1 2 3 4 5 6 支支节节 1 0 0 - -1 0 1 0 1 0 0 - -1 - -1称称A为降阶关联矩阵为降阶关联矩阵 (n-1) b ,表征独立节点与支路的关联表征独立节点与支路的关联性质。也性质。也称关联矩阵。称关联矩阵。各行不独立。各行不独立。 一、关联矩阵、割集矩阵和回路矩阵的定义一、关联矩阵、割集矩阵和回路矩阵的定义2. 割集矩阵割集矩阵1 支路支路k与割集与割集j方向一致。方向一致。 - -1 支
7、路支路k与割集与割集j方向相反。方向相反。 0 支路支路k 不在割集不在割集 j 中。中。 qjk =12345678(a)Q1 Q2Q3 Q4Q = qjkn-1 b基本割集数基本割集数 支路数支路数 (1,2,3),(1,4,5),(2,6,8),(5,7,8)是该图的一组是该图的一组独立割集,独立割集,流出流出闭合面方向为割闭合面方向为割集方向。集方向。 Q1Q2Q3Q414283576 - - - - - -= =11010000101000100001100100000111Q 支路支路 割集割集 (2)支路排列顺序为先树支后连支。支路排列顺序为先树支后连支。 约定约定: (1)割集
8、方向与树支方向相同。割集方向与树支方向相同。12345678(b)Q1 Q2Q4Q3基本割集矩阵基本割集矩阵Qf选选 2 、 4、5、8为树支,连支为为树支,连支为1、3、6 、7。 Q1Q2Q3Q428475163-=01111000111101001110001000110001fQ支路支路 割集割集 = 1 Ql EtQl3. 回路矩阵回路矩阵B = bjk l b基本回路数基本回路数 支路数支路数 1 支路支路k与回路与回路j关联,方向一致。关联,方向一致。 - -1 支路支路k 与回路与回路j关联,方向相反。关联,方向相反。 0 支路支路k 不在回路不在回路 j中。中。 bjk=(a
9、)12345678l2l3 l4l1-=11100000001001100101100000001101B14283576l1l2l3l4支路支路 回路回路 12345678 (2) 支路排列顺序为先连支后树支。支路排列顺序为先连支后树支。 约定约定: (1) 回路电流的参考方向取连支电流方向。回路电流的参考方向取连支电流方向。 基本回路矩阵基本回路矩阵Bf选选 2 、 4、5、8为树支,连支为为树支,连支为1、3、6 、7。 -=01101000111001001111001011010001fB17386254b1b3b6b7支路支路 回路回路 = 1 Bt ElBt1.用矩阵用矩阵A描述
10、的基尔霍夫定律的矩阵形式描述的基尔霍夫定律的矩阵形式(1)KCL的矩阵形式的矩阵形式以节点为参考节点以节点为参考节点Aib = 1 1 1 0 0 0 0 0 0 - -1 1 1 0 0 0 0 0 0 - -1 - -1 17654321iiiiiii0765543321=-=iiiiiiiiin-1个独立个独立方程方程矩阵形式的矩阵形式的KCL:Aib = 0二、用矩阵二、用矩阵A、Q、B表示的基尔霍夫定律的矩阵形式表示的基尔霍夫定律的矩阵形式1234567(2) KVL的矩阵形式的矩阵形式buuuuuuu=654321nTb :KVLuAu=矩阵形式矩阵形式 -=n3n2n1nT100
11、100110010011001001uuuuA=-=n3n3n3n2n2n2n1n2n1uuuuuuuuu矩阵形式的矩阵形式的KCL:07655435421=-=iiiiiiiiii矩阵形式的矩阵形式的KCL:Qf ib =0 (1)KCL的矩阵形式的矩阵形式取(取(2,3,6)为树,)为树, 1234567Q2Q1 Q3-=7654321bf111000000111000011011iiiiiiiiQ2.用用矩阵矩阵Qf 描述的基尔霍夫定律的矩阵形式描述的基尔霍夫定律的矩阵形式 电路中的(电路中的(n-1)个树支电压可用()个树支电压可用(n-1)阶列向量)阶列向量表示,即表示,即T1)t(
12、t2t1t.-=nuuuutTfbuQu=(2) KVL的的矩阵形式矩阵形式, , , , bt3t3t3t2t1t2t1t2t1t1t3t2t17654321tTf100100111011010001001uuuuuuuuuuuuuuuuuuuuuuQ=-=-=l个独立个独立KVL方程方程矩阵形式的矩阵形式的KVL:Bf ub= 03. 用矩阵用矩阵Bf表示的基尔霍夫定律的矩阵形式表示的基尔霍夫定律的矩阵形式123456701100000011011000011100000011766532432217654321bf=-=-=uuuuuuuuuuuuuuuuuuuB(1) KVL的的矩阵形
13、式矩阵形式(2)KCL的的矩阵形式矩阵形式独立回路电流独立回路电流1234567b44332323211432176543211000110001000010011001110001iiiiiiiiiiiiiiiiiiiiiiilllllllllllllll=-=-=li矩阵形式的矩阵形式的KCL:ib=Bf TilQ Qi = = 0 QTut = = u 小结:小结: A B Ai = = 0 BTil = = i KCL KVL ATun = = u Bu = = 0 13-1电路的有向图如图所示,电路的有向图如图所示,(1)节点为参考写出节点为参考写出其关联矩阵其关联矩阵A,(2)以实
14、线为树枝,虚线为连支,写以实线为树枝,虚线为连支,写出其单连支回路矩阵出其单连支回路矩阵Bf (3)写出单树支割集矩阵写出单树支割集矩阵Qf。123456789(1)以节点为参考节点,以节点为参考节点,其余其余4个节点为独立节点个节点为独立节点的关联矩阵的关联矩阵A为为(2)以实线以实线(1,2,3,4)为树枝,虚线为树枝,虚线(5,6,7,8,9)为连支,其为连支,其单连支回路矩阵单连支回路矩阵Bf为为123456789(3)以实线以实线(1,2,3,4)为树枝,虚线为树枝,虚线(5,6,7,8,9)为连支,其为连支,其单树支割集矩阵单树支割集矩阵Qf为为1234567891.对于一个含有对
15、于一个含有n个节点个节点b条支路的条支路的电路,关联矩阵电路,关联矩阵反映了什么关联反映了什么关联性质?性质? 2.对于一个含有对于一个含有n个节点个节点b条支路的电路,回路矩条支路的电路,回路矩阵反映了什么关联性质?阵反映了什么关联性质? 3.对于一个含对于一个含有有n个节点个节点b条条支路的电路,支路的电路,割集矩阵反映割集矩阵反映了什么关联性了什么关联性质质? 4.对于一个含有对于一个含有n个节个节点点b条支路的电路,用条支路的电路,用矩阵矩阵A、Qf、Bf表示的表示的基尔霍夫定律的矩阵形基尔霍夫定律的矩阵形式分别是什么?式分别是什么?13.3 回路电流方程的矩阵形式回路电流方程的矩阵形
16、式 kUSkUkIekI - -Zk - -kIS一、复合支路一、复合支路 第第k条支路条支路 , kkUI 第第k条支路的阻抗,只能是单一的电阻、电感条支路的阻抗,只能是单一的电阻、电感 或电容,不允许是它们的组合。或电容,不允许是它们的组合。阻抗上电压、阻抗上电压、 电流的参考方向与支路方向相同电流的参考方向与支路方向相同。 kZSkU独立电压源,其独立电压源,其参考方向和支路方向相反参考方向和支路方向相反。 SkI独立电流源,其独立电流源,其参考方向和支路方向相反参考方向和支路方向相反。 , kkUI支路电压、支路电流,取关联参考方向。支路电压、支路电流,取关联参考方向。 1.电路中不含
17、互感和受控源的情况电路中不含互感和受控源的情况(相量法相量法) SS()kkkkkUZ IIU= = - -111S1S1SSSS00000000000000000000kkkkkbbbbbZUIIUZUIIUZUIIU = =- - 按定义写开按定义写开 kUSkUkIekI - -Zk - -kIS二、支路方程的矩阵形式二、支路方程的矩阵形式 2.电路中含有互感的情况电路中含有互感的情况 设第设第k条、条、j条支路有耦合关系,编号时把它们相邻的编在条支路有耦合关系,编号时把它们相邻的编在一起(设两个电流都为一起(设两个电流都为流入同名端流入同名端):): eeSSSSeeSSSSj()j(
18、)jj()()kkkkjjkkkkkjjjkjjkkjjjjkkkjjjjUZ IM IUZIIMIIUUM IZ IUMIIZ IIU= = - -= = - -= = - -= = - - ()()()-11e1S111S1S122e2S222S2S2eSSSbbbbbbbbUZ IUZIIUUZ IUZIIUUZ IUZIIU=-=-=-=-=-=- 其余支路电压、电流的关系为:其余支路电压、电流的关系为: =111S1S1222S2S2SSS0000000000j000j00000kkjkkkkjjjjjbbbbZUIIUZUIIUZMUIIMZUIIZUII - SSSkjbUUUS
19、S()UZ IIU= = - - 故回路电流方程不变,只是阻抗阵故回路电流方程不变,只是阻抗阵Z不再为对角阵,不再为对角阵, 其非对角线元素的其非对角线元素的第第k行、第行、第j列列和和第第j行、第行、第k列列的两个元的两个元 素是两条支路的互阻抗。互阻抗前的素是两条支路的互阻抗。互阻抗前的“” ,电流流入同电流流入同名名 端的对应取端的对应取“ ”,反之取,反之取“”。 仍可统一写为仍可统一写为 3.电路中含有受控源的情况电路中含有受控源的情况 deS()kkjjkjjjUr IrII=SdS()kkkkkkUZIIUU=-=-而而 这时含有受控源的支路阻抗这时含有受控源的支路阻抗 Z 为非
20、对角阵,非对角线为非对角阵,非对角线上的元素是与受控电压源的控制系数有关的元素。因支路方上的元素是与受控电压源的控制系数有关的元素。因支路方程的右端加上受控电压源,故支路阻抗阵变为:程的右端加上受控电压源,故支路阻抗阵变为: kU ISkSkUkIekI - -Zk+ dkU=12kkjbZZZZrZk j 取回路电流(连支电流)为未知变量。取回路电流(连支电流)为未知变量。 0 KVL=kUB0 =-=SkSkkkkkUBIBZIBZUBSkkSklkIBZUBIBBZ-=T SkSkkkkUIIZU-=)(回路方程矩阵形式回路方程矩阵形式 支路电压与支路电流的关系支路电压与支路电流的关系
21、lkIBIT KCL=代入上面方程,整理后得代入上面方程,整理后得 SkU. Zk+- -kU. kI. SkI. ekI. +- -lSllUIZ= 回路矩阵方程回路矩阵方程(回路电压源相量)(回路电压源相量)lSU Zl(回路阻抗阵)(回路阻抗阵)三、回路电流方程的矩阵形式三、回路电流方程的矩阵形式 13.2列出图示电路矩阵形式回路电流方程的频域表达式。列出图示电路矩阵形式回路电流方程的频域表达式。 124356+- -U2Z3Z6 IS6+- -Z2Z5Z1+- - U2US1TS6S00000II-=-=111000001101000011fB-=6523210000000000000
22、00000000000000000ZZZZZZZ 画出有向图,给支路编号,选树画出有向图,给支路编号,选树(1,4,6)。TS1S00000UU-= =6523121121Tff000ZZZZZZZZZZZBBZlTS66S1S1SSSIZUUIBZUBUl-=-=-=S66S1S15326523121121000IZUUIIIZZZZZZZZZZSlU计算计算Zl 和和 。矩阵形式回路电流方程的频域表达式为矩阵形式回路电流方程的频域表达式为13-3列出图示电路矩阵形式回路电流方程的复频域列出图示电路矩阵形式回路电流方程的复频域表达式。表达式。R1C2L3L5uS4uS5* *M12435 画
23、出有向图,给支路编号,选树画出有向图,给支路编号,选树(1,4)。 TS5S4)()(000(s)sUsUU-=0)(=sI-=110000110100011fB-=532100000000000000100000)(sLsMsMsLsCRsZ 计算计算Z(s)UlS(s)。-=5311121Tff001)()(sLsMsMsLRRRsCRBsZBsZlTS5S4S4fS)()()(0)()(sUsUsUsUBsUl-=-=-)()()(0)()()(001S5S4S45325311121sUsUsUsIsIsIsLsMsMsLRRRsCR矩阵形式回路电流方程的复频域表达式为矩阵形式回路电流方
24、程的复频域表达式为小结小结列写回路电流方程矩阵形式的步骤如下:列写回路电流方程矩阵形式的步骤如下:(1)画有向图,给支路编号,选树。画有向图,给支路编号,选树。(2)写出支路阻抗矩阵写出支路阻抗矩阵Z(s)和回路矩阵和回路矩阵Bf。按标准。按标准 复合支路的规定写出支路电压列向量复合支路的规定写出支路电压列向量)()()(sUsIsZlSll=(4)写出矩阵形式回路电流方程的复频域表达式写出矩阵形式回路电流方程的复频域表达式SlllUIZ=或或TlBZBZ =(3)求出回路阻抗矩阵求出回路阻抗矩阵。 1.什么是复什么是复合支路?合支路? 2.矩阵形式回路电矩阵形式回路电流方程的列写中,流方程的
25、列写中,若电路中含有无伴若电路中含有无伴电流源,将会有何电流源,将会有何问题?问题? 13.4 节节点电压方程的矩阵形式点电压方程的矩阵形式一一、复合支路复合支路ekI 元件电流元件电流 支路电流支路电流 kI 受控电流受控电流 dkI 支路的复导纳(阻抗)支路的复导纳(阻抗) )(kkZY 支路电压支路电压 kUSkU 独立电压源独立电压源 SkI 独立电流源独立电流源 按复合支路的规定,电路中不允许有受控电压源,也不允许按复合支路的规定,电路中不允许有受控电压源,也不允许存在存在“纯电压源支路纯电压源支路”。 复合支路规定了一条支路可以最多包含的元件数,可以缺少复合支路规定了一条支路可以最
展开阅读全文