化学气相沉积法的原理CVD技术的反应原理课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《化学气相沉积法的原理CVD技术的反应原理课件.ppt》由用户(三亚风情)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 化学 沉积 原理 CVD 技术 反应 课件
- 资源描述:
-
1、第4章 化学气相沉积4.1 化学气相沉积合成方法发展化学气相沉积乃是通过化学反应的方式,利用加热、等离子激励或光辐射等各种能源,在反应器内使气态或蒸汽状态的化学物质在气相或气固界面上经化学反应形成固态沉积物的技术。化学气相沉积的英文词原意是化学蒸汽沉积(Chemical Vapor Deposition,CVD),因为很多反应物质在通常条件下是液态或固态,经过汽化成蒸汽再参与反应的。化学气相沉积的古老原始形态可以追朔到古人类在取暖或烧烤时熏在岩洞壁或岩石上的黑色碳层。作为现代CVD技术发展的开始阶段在20世纪50年代主要着重于刀具涂层的应用。从20世纪6070年代以来由于半导体和集成电路技术发
2、展和生产的需要,CVD技术得到了更迅速和更广泛的发展。CVD技术不仅成为半导体超纯硅原料超纯多晶硅生产的唯一方法,而且也是硅单晶外延、砷化镓等旋半导体和旋半导体单晶外延的基本生产方法。在集成电路生产中更广泛的使用CVD技术沉积各种掺杂的半导体单晶外延薄膜、多晶硅薄膜、半绝缘的掺氧多晶硅薄膜;绝缘的二氧化硅、氮化硅、磷硅玻璃、硼硅玻璃薄膜以及金属钨薄膜等。在制造各类特种半导体器件中,采用CVD技术生长发光器件中的磷砷化镓、氮化镓外延层等,硅锗合金外延层及碳化硅外延层等也占有很重要的地位。在集成电路及半导体器件应用的CVD技术方面,美国和日本,特别是美国占有较大的优势。日本在蓝色发光器件中关键的氮
3、化镓外延生长方面取得突出进展,以实现了批量生产。1968年K .Masashi等首次在固体表面用低汞灯在P型单晶硅膜,开始了光沉积的研究。1972年Nelson和Richardson用CO2激光聚焦束沉积出碳膜,从此发展了激光化学气相沉积的工作。继Nelson后,美国S. D. Allen,Hagerl等许多学者采用几十瓦功率的激光器沉积SiC、Si3N4等非金属膜和Fe、Ni、W、Mo等金属膜和金属氧化物膜。前苏联Deryagin Spitsyn和Fedoseev等在20世纪70年代引入原子氢开创了激活低压CVD金刚石薄膜生长技术,80年代在全世界形成了研究热潮,也是CVD领域一项重大突破。
4、CVD技术由于采用等离子体、激光、电子束等辅助方法降低了反应温度,使其应用的范围更加广阔。 中国CVD技术生长高温超导体薄膜和CVD基础理论方面取得了一些开创性成果。Blocher在1997年称赞中国的低压CVD(low pressure chemical vapor deposition,LPCVD)模拟模型的信中说:“这样的理论模型研究不仅仅在科学意义上增进了这项工艺技术的基础性了解,而且引导在微电子硅片工艺应用中生产效率的显著提高。” 1990年以来中国在激活低压CVD金刚石生长热力学方面,根据非平衡热力学原理,开拓了非平衡定态相图及其计算的新领域,第一次真正从理论和实验对比上定量化的证
5、实反自发方向的反应可以通过热力学反应耦合依靠另一个自发反应提供的能量推动来完成。低压下从石墨转变成金刚石是一个典型的反自发方向进行的反应,它依靠自发的氢原子耦合反应的推动来实现。在生命体中确实存在着大量反自发方向进行的反应,据此可以把激活(即由外界输入能量)条件下金刚石的低压气相生长和生命体中某些现象做类比讨论。因此这是一项具有深远学术意义和应用前景的研究进展。目前,CVD反应沉积温度的耕地温化是一个发展方向,金属有机化学气相沉积技术(MOCVD)是一种中温进行的化学气相沉积技术,采用金属有机物作为沉积的反应物,通过金属有机物在较低温度的分解来实现化学气相沉积。近年来发展的等离子体增强化学气相
6、沉积法(PECVD)也是一种很好的方法,最早用于半导体材料的加工,即利用有机硅在半导体材料的基片上沉积SiO2。PECVD将沉积温度从1000降到600以下,最低的只有300左右,等离子体增强化学气相沉积技术除了用于半导体材料外,在刀具、模具等领域也获得成功的应用。随着激光的广泛应用,激光在气相沉积上也都得到利用,激光气相沉积(LCVD)通常分为热解LCVD和光解LCVD两类,主要用于激光光刻、大规模集成电路掩膜的修正以及激光蒸发-沉积。在向真空方向发展方面在向真空方向发展方面,出现了超高真空/化学气相沉(UHV/CVD)法。这是一种制造器件的半导体材料的系统,生长温度低(425600),但真
7、空度要求小于1.3310Pa,系统的设计制造比分子束外延(MBE)容易,其主要优点是能实现多片生长。此外,化学气相沉积制膜技术还有射频加热化学气相沉积(RF/CVD)、紫外光能量辅助化学气相沉积(UV/CVD)等其它新技术不断涌现。 4.2.1化学气学气相沉积积法的概概念化学气相沉积乃是通过化学反应的方式,利用加热、等离子激励或光辐射等各种能源,在反应器内使气态或蒸汽状态的化学物质在气相或气固界面上经化学反应形成固态沉积物的技术。简单来说就是:两种或两种以上的气态原材料导入到一个反应室内,然后他们相互之间发生化学反应,形成一种新的材料,沉积到基片表面上。从气相中析出的固体的形态主要有下列几种:
8、在固体表面上生成薄膜、晶须和晶粒,在气体中生成粒子。CVD技术的基本要求为适应CVD技术的需要,选择原料、产物及反应类型等通常应满足以下几点基本要求:(1)反应剂在室温或不太高的温度下最好是气态或有较高的蒸气压而易于挥发成蒸汽的液态或固态物质,且有很高的纯度;(2)通过沉积反应易于生成所需要的材料沉积物,而其他副产物均易挥发而留在气相排出或易于分离;(3)反应易于控制。CVD技术的特点 CVD技术是原料气或蒸汽通过气相反应沉积出固态物质,因此把CVD技术用于无机合成和材料制备时具有以下特点:(1)沉积反应如在气固界面上发生则沉积物将按照原有固态基底(又称衬底)的形状包覆一层薄膜。(2)涂层的化
9、学成分可以随气相组成的改变而改变从而获得梯度沉积物或得到混合镀层(3)采用某种基底材料,沉积物达到一定厚度以后又容易与基底分离,这样就可以得到各种特定形状的游离沉积物器具。(4)在CVD技术中也可以沉积生成晶体或细粉状物质,或者使沉积反应发生在气相中而不是在基底表面上,这样得到的无机合成物质可以是很细的粉末,甚至是纳米尺度的微粒称为纳米超细粉末。(5)CVD工艺是在较低压力和温度下进行的,不仅用来增密炭基材料,还可增强材料断裂强度和抗震性能是在较低压力和温度下进行的。CVD技术的分类CVD技术术根据反应类应类型或者压压力可分为为 低压CVD(LPCVD) 常压CVD(APCVD) 亚常压CVD
10、(SACVD) 超高真空CVD(UHCVD) 等离子体增强CVD(PECVD) 高密度等离子体CVD(HDPCVD) 快热CVD(RTCVD) 金属有机物CVD(MOCVD)CVD技术常用的CVD技术有(1)常压化学气相沉积、(2)低压化学气相沉积、(3)等离子体增强化学气相沉积。沉积方式优点缺点APCVD反应器结构简单沉积速率快低温沉积阶梯覆盖能差粒子污染LPCVD高纯度阶梯覆盖能力极佳产量高,适合于大规模生产高温沉积低沉积速率PECVD低温制程高沉积速率阶梯覆盖性好化学污染粒子污染 表4.2 三种CVD方法的优缺点4.2.2化学气学气相沉积积法的原理 1. CVD技术术的反应应原理 CVD
11、是建立在化学反应基础上的,要制备特定性能材料首先要选定一个合理的沉积反应。用于CVD技术的通常有如下所述五种反应类型。 (1)热热分解反应应 热分解反应是最简单的沉积反应,利用热分解反应沉积材料一般在简单的单温区炉中进行,其过程通常是首先在真空或惰性气氛下将衬底加热到一定温度, 然后导入反应气态源物质使之发生热分解,最后在衬底上沉积出所需的固态材料。热分解发可应用于制备金属、半导体以及绝缘材料等。 最常见的热分解反应有四种。(a)氢化物分解 (b)金属有机化合物的热分解(c)氢化物和金属有机化合物体系的热分解(d)其他气态络合物及复合物的热分解(2)(2)氧化还原反应沉积氧化还原反应沉积 一些
12、元素的氢化物有机烷基化合物常常是气态的或者是易于挥发的液体或固体,便于使用在CVD技术中。如果同时通入氧气,在反应器中发生氧化反应时就沉积出相应于该元素的氧化物薄膜。例如:0325475422222CSiHOSiOH O 030050042622322215210CSiHB HOB OH O 045023 622322()1296CAl CHOAl OH OCO 许多金属和半导体的卤化物是气体化合物或具有较高的蒸气压,很适合作为化学气相沉积的原料,要得到相应的该元素薄膜就常常需采用氢还原的方法。氢还原法是制取高纯度金属膜的好方法,工艺温度较低,操作简单,因此有很大的实用价值。例如:030062
13、36CWFHWHF0115012004224CSiClHSiHCl (3) 化学合成反应沉积化学合成反应沉积化学合成反应沉积是由两种或两种以上的反应原料气在沉积反应器中相互作用合成得到所需要的无机薄膜或其它材料形式的方法。这种方法是化学气相沉积中使用最普遍的一种方法。与热分解法比,化学合成反应沉积的应用更为广泛。因为可用于热分解沉积的化合物并不很多,而无机材料原则上都可以通过合适的反应合成得到。075043423412CSiHNHSiNH 085090042243412CSiClNHSiNHCl (4)化学输运学输运反应应沉积积把所需要沉积的物质作为源物质,使之与适当的气体介质发生反应并形成一
14、种气态化合物。这种气态化合物经化学迁移或物理载带而输运到与源区温度不同的沉积区,再发生逆向反应生成源物质而沉积出来。这样的沉积过程称为化学输运反应沉积。其中的气体介质成为输运剂,所形成的气态化合物称为输运形式。这类反应中有一些物质本身在高温下会汽化分解然后在沉积反应器稍冷的地方反应沉积生成薄膜、晶体或粉末等形式的产物。HgS就属于这一类,具体反应可以写成:也有些原料物质本身不容易发生分解,而需添加另一种物质(称为输运剂)来促进输运中间气态产物的生成。21222( )2( )2( )( )TTHgS sIgHg gSg (5) 等离子体增强的反应应沉积积在低真空条件下,利用直流电压(DC)、交流
15、电压(AC)、射频(RF)、微波(MW)或电子回旋共振(ECR)等方法实现气体辉光放电在沉积反应器中产生等离子体。由于等离子体中正离子、电子和中性反应分子相互碰撞,可以大大降低沉积温度,例如硅烷和氨气的反应在通常条件下,约在850左右反应并沉积氮化硅,但在等离子体增强反应的条件下,只需在350左右就可以生成氮化硅。一些常用的PECVD反应有:035042().CxxySiHxN OSiOSiO H或035043().CxxySiHxNHSiNSiN H或035042()2CSiHaSi HH(6)其他能源增强反应应沉积积随着高新技术的发展,采用激光增强化学气相沉积也是常用的一种方法。例如: 通
16、常这一反应发生在300左右的衬底表面。采用激光束平行于衬底表面,激光束与衬底表面距离约1mm,结果处于室温的衬底表面上就会沉积出一层光亮的钨膜。其他各种能源例如利用火焰燃烧法,或热丝法都可以实现增强反应沉积的目的。6()6W COWCO 激光束2. CVD技术术的热动热动力学学原理化学气相沉积是把含有构成薄膜元素的气态反应剂的蒸汽及反应所需其它气体引入反应室,在衬底表面发生化学反应,并把固体产物沉积到表面生成薄膜的过程。不同物质状态的边界层对CVD沉积至关重要。所谓边界层,就是流体及物体表面因流速、浓度、温度差距所形成的中间过渡范围。图4.1显示一个典型的CVD反应的反应结构分解。首先,参与反
17、应的反应气体,将从反应器得主气流里,借着反应气体在主气流及基片表面间的浓度差,以扩散的方式,经过边界层传递到基片的表面,这些达到基片的表面的反应气体分子,有一部分将被吸附在基片的表面上图4.1(b)。当参与反应的反应物在表面相会后,借着基片表面所提供的能量,沉积反应的动作将发生,这包括前面所提及的化学反应,及产生的生成物在基片表面的运动(及表面迁移),将从基片的表面上吸解,并进入边界层,最后流入主体气流里,如图5.1 (d)。这些参与反应的反应物及生成物,将一起被CVD设备里的抽气装置或真空系统所抽离,如图4.1(e)。图4.1 化学气相沉积的五个主要的机构(a)反应物已扩散通过界面边界层;(
18、b)反应物吸附在基片的表面;(c)化学沉积反应发生; (d) 部分生成物已扩散通过界面边界层;(e)生成物与反应物进入主气流里,并离开系统 输输送现现象以化学工程的角度来看,任何流体的传递或输送现象,都会涉及到热能的传递、动量的传递及质量的传递等三大传递现象。(1)热热量传递传递 热能的传递主要有三种方式:传导、对流及辐射。因为CVD的沉积反应通常需要较高的温度,因此能量传递的情形,也会影响CVD反应的表现,尤其是沉积薄膜的均匀性热传导是固体中热传递的主要方式,是将基片置于经加热的晶座上面,借着能量在热导体间的传导,来达到基片加热的目的,如图4.2所示。以这种方式进行的热能传递,可以下式表示。
19、 单位面积的能量传递=其中:kc为基片的热传导系数, T为基片与加热器表面间的温度差, X则近似于基片的厚度。codcTEkX图4.2 以热传导方式来进行基片加热的装置物体因自身温度而具有向外发射能量的本领,这种热传递的方式叫做热辐射。热辐射能不依靠媒介把热量直接从一个系统传到另一个系统。但严格的讲起来,这种方式基本上是辐射与传导一并使用的方法,如图4.3。辐射热源先以辐射的方式将晶座加热,然后再由热的传导,将热能传给置于晶座上的基片,以便进行CVD的化学反应。下式是辐射能的传导方程式。 单位面积的能量辐射=Er=hr(Ts1- Ts2) 其中:hr为“辐射热传系数”; Ts1与Ts2则分别为
20、辐射热原及被辐射物体表面的温度。图4.3 以热辐射为主的加热对流是第三种常见的传热方式,流体通过自身各部的宏观流动实现热量传递的过程。它主要是借着流体的流动而产生。依不同的流体流动方式,对流可以区分为强制对流及自然对流两种。前者是当流体因内部的“压力梯度”而形成的流动所产生的;后者则是来自流体因温度或浓度所产生的密度差所导致的。 单位面积的能量对流=Ecov=hc(Ts1- Ts2) 其中:hc即为“对流热传系数”(2)动动量传递传递图4.4显示两种常见的流体流动的形式。其中流速与流向均平顺者称为“层流”;而另一种于流动过程中产生扰动等不均匀现象的流动形式,则称为“湍流”。在流体力学上,人们习
21、惯以所谓的“雷诺数”,来作为流体以何种方式进行流动的评估依据。它估算的方式如下式所示 其中d微流体流经的管径,为流体的密度,为流体的流速,而则为流体的粘度。edRv图4.4 两种常见的流体流动形式基本上,CVD工艺并不希望反应气体以湍流的形式流动,因为湍流会扬起反应室内的微粒或微尘,使沉积薄膜的品质受到影响。图4.5(a)显示一个简易的水平式CVD反应装置的概念图。其中被沉积的基片平放在水平的基座上,而参与反应的气体,则以层流的形式,平行的流经基片的表面图4.5 流体流经固定表面时所形成的边界层及与移动方向x之间的关系假设流体在晶座及基片表面的流速为零,则流体及基片(或晶座)表面将有一个流速梯
22、度存在在,这个区域便是边界层。边界层的厚度,与反应器的设计及流体的流速有关,而可以写为:或将式4-33代入式4-34,而改写为 式中,x为流体在固体表顺着流动方向移动得距离面。1/22eRx1/220dxv也就是说,当流体流经一固体表面时,图4.6的主气流与固体表面(或基片)之间将有一个流速从零增到0的过渡区域存在,即边界层。这个边界层的厚度,与雷诺数倒数的平方根成正比,且随着流体在固体表面的移动而展开,如图4.6所示。CVD反应所需要的反应气体,便必须通过这个边界层以达到基片的表面。而且,反应的生成气体或未反应的反应物,也必须通过边界层已进入主气流内,以便随着主气流经CVD的抽气系统而排出。
23、图4.6 CVD反应物从主气流里往基片表面扩散时反应物在边界层两端所形成的浓度梯度 (3)质质量的传递传递 如上所述,反应气体或生成物通过边界层,是以扩散的方式来进行的,而使气体分子进行扩散的驱动力,则是来自于气体分子局部的浓度梯度。2CVD动动力学学CVDSiO2沉积,是一个典型的CVD反应的例子。图5.7显示CVDSiO2以TEOS为反应气体进行沉积时,其沉积速率与反应的操作温度之间的关系。很明显的,基本上CVDSiO2的沉积速率,将随着温度的上升而增加。但当温度超过某一个范围之后,温度对沉积速率的影响将变得迟缓且不明显。简单地说,CVD反应的进行,涉及到能量、动量、及质量的传递。反应气体
24、是借着扩散效应,来通过主气流与基片之间的边界层,以便将反应气体传递到基片的表面。接着因能量传递而受热的基片,将提供反应气体足够的能量以进行化学反应,并生成固态的沉积物以及其他气态的副产物。前者便成为沉积薄膜的一部分;后者将同样利用扩散效应来通过边界层并进入主气流里。至于主气流的基片上方的分布,则主要是与气体的动量传递相关。因为这几个在图4.1里所提及的反应步骤,彼此是相互串联的,所以CVD反应的反应速率决定步骤,便取决于这几个步骤里面最慢的一项。其中最值得注意的是反应气体的扩散由图4.6知道,反应气体通过边界层的步骤,可以用式4-40来表示。假设这个气体流量为F1,而气体分子在基片表面进行化学
25、反应所消耗的数量,以F2来代表。则这个流量可以写为 F2=KrCs (4-40) 式中,Kr为沉积反应的反应速率常数;Cs则是反应气体在基片表面的浓度。当图4.6的沉积反应达到平衡时,F1=F2。经整理,当CVD反应打稳定状态时,Cs可以用下式来表示 (4-12) (4-41) (4-42)gsr1()DCCkgs1CCshDrksh其中式4-42所表示的是另一项无因此准数,称为雪木数(sherwood number),以Sh来代表它。当Sh 1,或(D/) 1或(D/)Kr时,式(4-12)及式(4-41) 则可写为Cs0。这两个雪木数的极端情况告诉说明,当图4.6的扩散速率表面的化学反应还
展开阅读全文