容克式空气预热器运行与维修课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《容克式空气预热器运行与维修课件.ppt》由用户(三亚风情)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 容克式 空气 预热器 运行 维修 课件
- 资源描述:
-
1、1、空气预热器作用w锅炉空预器是利用锅炉尾部的烟气热量来加热空气的设备。锅炉空预器是利用锅炉尾部的烟气热量来加热空气的设备。w利用烟气中的热量加热空气,使空气温度升高,排烟温度降低,减少了利用烟气中的热量加热空气,使空气温度升高,排烟温度降低,减少了锅炉的排烟损失。另外,空气被加热之后送入炉内,使炉内燃料着火迅锅炉的排烟损失。另外,空气被加热之后送入炉内,使炉内燃料着火迅速,燃烧强烈完全,因而也减少了燃料的机械与化学不完全燃烧损失,速,燃烧强烈完全,因而也减少了燃料的机械与化学不完全燃烧损失,提高锅炉效率。提高锅炉效率。w提高空气温度,改善燃烧条件。空气通过预热器后再送入炉膛,由于送提高空气温
2、度,改善燃烧条件。空气通过预热器后再送入炉膛,由于送入炉内的空气温度提高,可使炉膛温度得到相应的提高,可使燃料迅速入炉内的空气温度提高,可使炉膛温度得到相应的提高,可使燃料迅速着火,改善或强化燃烧,保证低负荷下着火的稳定性。着火,改善或强化燃烧,保证低负荷下着火的稳定性。w提高炉膛温度,增强炉膛传热,减少炉内蒸发受热面。炉膛内辐射传热提高炉膛温度,增强炉膛传热,减少炉内蒸发受热面。炉膛内辐射传热量与火焰平均温度的四次方成正比。送入炉膛热空气温度提高,使得火量与火焰平均温度的四次方成正比。送入炉膛热空气温度提高,使得火焰平均温度提高,从而增强了炉内的辐射传热。这样,在满足相同的蒸焰平均温度提高,
3、从而增强了炉内的辐射传热。这样,在满足相同的蒸发吸热量的条件下,就可以减少水冷壁管受热面,节省金属消耗量。发吸热量的条件下,就可以减少水冷壁管受热面,节省金属消耗量。w降低烟气温度,改善引风机工作条件,降低风机电耗。降低烟气温度,改善引风机工作条件,降低风机电耗。w导热式(管式空气预热器)与再生式(蓄热式)w回转式空气预热器是现在各大电厂锅炉上普遍采用的烟气尾端换热装置。w与管式空气预热器相比,回转式空气预热器具有结构紧凑、体积小、换热面密度高、整机质量轻、金属耗用量少、利于安装布置、低温腐蚀较管式换热器轻等特点,适于在大型锅炉上使用。w但回转式空气预热器的缺点是漏风量大,工况良好时为68,安
4、装结束后一般为8% 12%,运行一段时间后为1530,远远大于管式换热器5以下的漏风量。w另外回转式空气预热器的结构复杂、制造工艺和安装要求高、运行维护工作量大,热态自动控制也较为困难。较高的漏风量引起预热器入口风压降低、风机电流升高,预热器后的过量空气系数升高、尾部排烟气温降低、锅炉热效率降低、燃煤损耗增加,锅炉达不到额定负荷。3、回转式预热器特点w回转式预热器结构紧凑,占地面积小,除节约金属耗量外,还简化了锅炉尾部受热面布置,因此,被广泛应用大容量锅炉。w回转式预热器中,烟气与空气不是同时与受热面接触,烟气与受热面接触时温度较高,低温腐蚀的危险性较小。w回转式预热器受热面允许有较大的磨损量
5、,即便个别受热元件被磨穿孔,也不会像管式预热器那样,导致漏风而影响正常运行。w回转式预热器结构复杂,制造工艺要求高。w回转式预热器漏风量大,密封性能良好的5%-8%,制造工艺不良或维护不好时漏风率可达20%甚至更高,漏风严重时影响锅炉出力。w空气预热器工作原理比较简单。预热器由转子连续旋转,通过特殊形状的金属元件从烟气中吸收热量,然后将热量交换给冷空气,由于预热器转子缓慢地旋转,烟气和空气交替地流过受热元件。旋转至烟气通道时,传热元件表面吸收高温烟气的热量,当转子旋至空气通道时,传热元件释放出热量加热空气。如此反复循环,转于每旋转一周就进行一次热交换,通过转子的连续旋转,不断地将热量传给冷空气
6、,提高进入炉膛助燃的空气温度,以满足锅炉燃烧需要。5、回转式空预器工作示意图 中心筒密封中心筒密封w在每一个转子径向隔板的内侧的热端和冷端都装有中心筒密封片,中心筒密封环绕热端和冷端转子中心筒周围。w在运行期间,中心筒密封紧贴着空气预热器连接板内围绕中心筒的导向和支承端轴的静密封卷筒, w旁路密封w沿着转子外壳的内侧,在空气预热器转子的出口和入口处装有旁路密封片。这些密封片在空气预热器的转子外壳的热端和冷端的空气侧和烟气侧呈圆周分布。 为了降低空预器的内部漏风量,在各个仓室之间、转子上下面对应的位置安装有控制漏风间隙的扇形密封板,上部扇形密封是动态可调的,下部是固定的。同时还在转子的上下表面、
7、转子的圆周曲面以及转子与壳体的上下圆周结合处,分别安装有相互对应的等分角度的固定式的径向密封板、轴向密封板和周向密封板,如图4所示。 空预器密封结构及分类回转式空气预热器的漏风间隙及动态分析 回转式空气预热器的漏风间隙及动态分析在回转式空气预热器的转子的上、下工作面和转子的圆周筒体上,分别安装有许多径向和轴向密封片,分别与上部活动式扇形密封板、下部固定式密封板、轴向密封板形成狭小的漏风间隙;而圆周密封板则与转子上、下法兰圆周侧形成狭小漏风间隙。这些漏风间隙分别称为,空预器径向漏风间隙、空预器轴向漏风间隙、和空预器圆周漏风间隙。而这些间隙在冷态时又分别根据位置的不同,预留了不等的间隙距离,如图6
8、所示。以常见的300MW机组回转式空气预热器为例;上部活动式扇形板与转子上部径向密封片之间的冷态预留距离为,A端1.5,B端1.5;下部固定式扇形板与转子下部径向密封片之间的冷态预留距离为,C端0,D端1920;空预器轴向密封板与转子轴向密封片之间的冷态预留距离为,F端910,E端5.56.5。从图6可以看出在冷态时,转子上部径向漏风间隙近似为矩形形状,转子下部径向漏风间隙近似为三角形形状,转子的轴向漏风间隙近似为梯形形状。 回转式空气预热器的漏风间隙及动态分析分析回转式空气预热器的热态漏风间隙时,首先分析空预器的转子的变形情况,由于转子的不断转动,转子上表面持续受到热风侧的高温烟气的加热,温
9、度较高;而转子的下表面也连续受到冷风侧一、二次冷风的冷却,温度较低。这样就使得转子的上部热膨胀大于下部的热膨胀,由于转子的下端受到推力轴承、中心驱动装置、支撑横梁的支撑作用,使得转子在受热后的热态变形为向上部膨胀。这种膨胀的结果使得转子中心的上表面较冷态时升高,并且由于转子上部的径向膨胀大于下部,使得转子的上部受到的热膨胀径向力矩大于转子下部。这种力矩致使转子以下部为原点发生向下、向外的翻转变形。加之转子的自重力矩,更加速了转子的这种行似“蘑菇状”的热态变形。 在这种“蘑菇状”的热态变形中,空预器转子的外周发生向下的沉降现象,而转子中心发生隆起。这就使得热态时转子下部的三角形漏风间隙和转子圆周
10、的轴向漏风间隙变得比冷态时小,而转子上部的漏风间隙变得比冷态时大。而且随着锅炉负荷的升高,空预器转子换热量的增加,上述“蘑菇状”变形就越明显,各处漏风间隙的变化也就越大。回转式空气预热器的漏风间隙及动态分析回转式空气预热器的漏风间隙及动态分析我们可以清楚地看到,转子下部D处的间隙随着锅炉负荷升高而逐渐变小;转子圆周F处、E处的间隙也随着锅炉负荷的增加而趋于变小;转子上部B处的间隙却随着锅炉负荷的增加而逐渐变大。在上述转子的“蘑菇装”变形中,转子下部和转子圆周处的漏风量随着锅炉负荷的增加而逐渐减少,而转子上部的漏风量却随着锅炉负荷的增加而增加。通过空预器转子上部活动式扇形板上连接的调节杆,可以在
11、一定范围内改变转子在热态时上部的漏风间隙大小,从而达到调节漏风量的作用。通过比较,要达到相当的漏风量调节,就必须在热态时使上部活动式扇形密封板变形大于冷态时的变形量,即使得活动式扇形密封板更加弯曲才行。回转式空气预热器的漏风间隙及动态分析通过分析得知,当锅炉处于起炉过程或是低负荷运行时,由于空预器转子的换热量较小,转子上部热端和下部冷端的热变形较锅炉重负荷时要小,造成空预器转子的“蘑菇态”变形不严重,此时转子下部固定式密封板处的径向漏风量和转子圆周处的轴向漏风量为空预器的主要漏风。而此时空预器上部活动式扇形密封板处的径向漏风量,由于转子的外延下翻而有所增加,通过恰当调节上部活动式扇形密封板,可
12、以使上部漏风量得到有效控制。随着锅炉负荷和空预器转子换热量的增加,转子的“蘑菇装”变形加剧,转子下部固定式扇形密封板处的径向漏风间隙和转子圆周处的轴向漏风间隙减小,这两处漏风量减小;而转子上部活动式扇形密封板处的径向漏风间隙却增大很多,漏风量也随之有较大增加,成为空预器的主要漏风。 热端径向刷封的安装位置冷端径向刷封的安装位置轴向刷封的安装位置49七、300MW空预器轴承及润滑w导向轴承采用双列向心球面滚子轴承,内圈固定在上轴套上,外圈固定导向轴承采用双列向心球面滚子轴承,内圈固定在上轴套上,外圈固定在导向轴承座上,随着预热器主轴的热膨胀,导向轴承座可在导向轴承在导向轴承座上,随着预热器主轴的
13、热膨胀,导向轴承座可在导向轴承外壳内作轴向移动,轴承采用外壳内作轴向移动,轴承采用“油浴油浴+循环循环”的润滑方式。润滑油为的润滑方式。润滑油为28号轧钢机油,容量约为号轧钢机油,容量约为30升,设有吸油、供油、放油管,还有油温指示升,设有吸油、供油、放油管,还有油温指示和控制室油温指示、超温报警三个热偶。和控制室油温指示、超温报警三个热偶。w推力轴承采用推力向心球面滚子轴承,内圈通过同轴定位板与下轴固定,推力轴承采用推力向心球面滚子轴承,内圈通过同轴定位板与下轴固定,外圈坐落在推力轴承座上,推力轴承座通过外圈坐落在推力轴承座上,推力轴承座通过36个合金钢螺栓紧固在下梁个合金钢螺栓紧固在下梁底
14、面。轴承采用底面。轴承采用“油浴油浴+循环循环”的润滑方式,润滑油为的润滑方式,润滑油为28号轧钢机油,号轧钢机油,容量约为容量约为300升,推力轴承座上设有进油口、出油口、放油口、通气孔、升,推力轴承座上设有进油口、出油口、放油口、通气孔、油位计以及热电阻的接口。油位计以及热电阻的接口。w导向与推力轴承分别采用两种类型的稀油站装置。导向轴承稀油站置于导向与推力轴承分别采用两种类型的稀油站装置。导向轴承稀油站置于上梁外侧。进油管与导向轴承回油管相连,出油管与导向轴承进油管相上梁外侧。进油管与导向轴承回油管相连,出油管与导向轴承进油管相连,组成一半封闭油循环系统。连,组成一半封闭油循环系统。 八
15、、300MW空预器润滑油系统九、600MW空预器轴承及润滑w转子由自调心球面滚子推力轴承支撑,底部轴承箱固定在支撑登板上。转子的全部旋转重量均由推力轴承支撑。w底部轴承采用油浴润滑。轴承箱上装有注油器和油位计,并开有用于安装测温元件的螺纹孔。w顶部导向轴承为球面滚子轴承,安装在一轴套上。轴套装在转子驱动轴上,并用锁紧盘与之固定。导向轴承和轴套的大部分处于顶部轴承箱内。w顶部轴承采用油浴润滑,顶部轴承箱上有加油孔、注油器、油位计、呼吸器和放油塞。另外还设有用于安装测温元件的螺纹孔。顶部轴承箱还配有冷却水系统,冷却水入口温度要求不得高于38。十、转子驱动装置w300MW空预器为保证空预器可靠运转,
16、电驱动装置采用两个独立电源的为保证空预器可靠运转,电驱动装置采用两个独立电源的电动机。主驱动电机采用厂用电源,辅助驱动电机采用保安电源,作为电动机。主驱动电机采用厂用电源,辅助驱动电机采用保安电源,作为备用电机。在辅助电机与减速器间有自锁器,主电机转时离心器解脱,备用电机。在辅助电机与减速器间有自锁器,主电机转时离心器解脱,辅助电机不转;辅助电机转时,主电机将被带着同向旋转。辅助电机不转;辅助电机转时,主电机将被带着同向旋转。 主辅驱动主辅驱动电机连锁保护。另外,还设有手动盘车装置,在两路动力电源故障时,电机连锁保护。另外,还设有手动盘车装置,在两路动力电源故障时,将盘车手轮套在辅助电机出轴上
17、低速旋转。将盘车手轮套在辅助电机出轴上低速旋转。w600MW600MW空预器驱动方式为顶部中心驱动方式,每台驱动装置配有两台鼠空预器驱动方式为顶部中心驱动方式,每台驱动装置配有两台鼠笼式电动机,即主电机和备用电机。正常情况下一台电机驱动空气预热笼式电动机,即主电机和备用电机。正常情况下一台电机驱动空气预热器运转,另一台作为备用电机。主电机运转时,备用电机通过齿轮箱的器运转,另一台作为备用电机。主电机运转时,备用电机通过齿轮箱的带动也被动旋转。每台电机各有由一台变频器驱动,任何时刻只能有一带动也被动旋转。每台电机各有由一台变频器驱动,任何时刻只能有一台变频器在工作,而另一台变频器处于待机备用状态
18、。驱动装置直接与台变频器在工作,而另一台变频器处于待机备用状态。驱动装置直接与转子顶部端轴相连。两台电机均能以正、反两个方向驱动空预器,只有转子顶部端轴相连。两台电机均能以正、反两个方向驱动空预器,只有在空预器不带负荷时才允许改变驱动方向。主电机的非驱动端设有键连在空预器不带负荷时才允许改变驱动方向。主电机的非驱动端设有键连接的输出轴,以便在维护时用盘车手柄进行手动盘车。接的输出轴,以便在维护时用盘车手柄进行手动盘车。十一、驱动装置示意图w因为回转式空气预热器是一种转动机构,在空预器的转动部分和固定部分之间,总是存在着一定的间隙。同时,由于流经预热器的空气(正压)与烟气(负压)之间有压差,空气
19、就会通过这些间隙漏到烟气流中,造成较大量的漏风。密封系统能控制并减少漏风从而减少能量的流失。密封系统是根据空气预热器转子受热变形而设计的,它包括径向密封、轴向密封、旁路密封以及中心筒密封。w径向密封是防止空气穿过转子与扇形板的密封区漏入烟气侧。w径向密封的方法是在转子仓格板的径向隔板上、下两侧装有径向密封片。w空预器运行过程中,当径向隔板经过密封区时,径向密封片与上下扇形板之间构成密封。w为保证径向密封间隙,在空预器上部扇形板的外缘装有间隙自动调整装置。w轴向密封是防止空预器的周向密封不严时,空气会漏入转子的外园筒与空预器外壳之间的间隙内,漏入烟气侧造成空预器漏风。w轴向密封主要有轴向密封片与
20、轴向密封板(圆弧板)组成。w与扇形板相对应的空预器外壳上装有三块弧形轴向密封板,弧形轴向密封板是通过支架、折角板和调整装置固定在空预器外壳上,可通过调整装置对轴向密封间隙进行调节。三分仓空预器密封系统的典型设计十三、空预器启动w启动前的试验:1、导向轴承和推力轴承油泵试运:启停正常,温度合格(小于55/70 ),跳闸报警装置完好。2、联动试验正常:联锁投入时,用事故按钮停运主电机,辅助电机联锁启动正常。3、每次大修后,空预器必须进行24 小时冷态试运转。w启动前的检查:1、检查空预器各人孔门关闭,检修工作结束;2、检查空预器转子顶、底轴承润滑油等级正确,油位合适,油站运行正常;3、检查空预器驱
21、动装置的润滑油质和油位合适,冷却水管路畅通 ;4、检查空预器烟气进口档板及一、二次风出口档板机构完整,开关灵活。w空预器启动1、人工盘动转子,确保空预器旋转自如;2、检查盘车手柄从电机尾部端轴上卸下且所有防护罩可靠固定; 3、检查空预器烟气进口挡板及一、二次风出口挡板已经关闭; 4、检查顶、底部轴承箱冷却水管路阀门打开,进一步核实冷却水温度、压力和流量,确保冷却水循环正常; 5、启动空预器主电机运行,检查烟气进口挡板及一、二次风出口挡板联动开启,备用电机投联锁。 十四、空预器正常运行中维护w认真监视空预器主电机电流不大于15A(密封改造后初次运行不大于20A)。就地运行无剧烈摩擦。 w导向轴承
22、及推力轴承油位、油温正常(在70以下),无漏油现象,冷却器的冷却水水流畅通,出口水温低于40。 w驱动装置中减速机油位应正常,温度不超过60。在主驱动电机工作时,备用电机处于良好备用。w预热器中的烟气进出口压差持续增大时,应加强吹灰。如吹灰无法达到设计要求时,应在停炉期间进行检查处理。w检查空预器的烟气侧和空气侧的进出口温度在正常范围内,出现异常时应及时分析原因采取措施。 w正常运行中空预器每8小时进行一次吹灰,也可视积灰情况增加吹灰次数。w下列情况下应对空预器及时吹灰或增加吹灰次数:1、锅炉启停过程中单独烧油或油煤混烧时,空预器应连续吹灰。2、空预器的出口风压降低或引风机入口负压增大,空预器
展开阅读全文