乳糖操纵子调控机理课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《乳糖操纵子调控机理课件.ppt》由用户(三亚风情)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 乳糖 操纵子 调控 机理 课件
- 资源描述:
-
1、乳糖操纵子的调控机理乳糖操纵子的调控机理2020/11/32 基因表达主要包括(基因)转录和(蛋基因表达主要包括(基因)转录和(蛋白质)翻译使信息分子白质)翻译使信息分子DNADNA转变成有功能蛋白转变成有功能蛋白质的过程,这一过程在体内受到精密的调控,质的过程,这一过程在体内受到精密的调控,以保证功能的有序性。这一调控称为基因表以保证功能的有序性。这一调控称为基因表达的调控,简称基因调控。达的调控,简称基因调控。 基因表达过程分为基因活化、转录、转基因表达过程分为基因活化、转录、转录后加工、翻译、翻译后加工等阶段。在上录后加工、翻译、翻译后加工等阶段。在上述各环节都存在基因表达调控的控制点。
2、述各环节都存在基因表达调控的控制点。基因表达调控基因表达调控2020/11/33 2020/11/34 基因表达及其调控的特点w组成性基因表达组成性基因表达(constitutive gene expression)管家基因的表达方式,较管家基因的表达方式,较少受环境影响,在个体各生长阶段的几少受环境影响,在个体各生长阶段的几乎全部组织中持续表达或变化很小。乎全部组织中持续表达或变化很小。w管家基因管家基因(housekeeping gene)在一个在一个生物个体的几乎所有细胞中持续表达的生物个体的几乎所有细胞中持续表达的基因。基因。2020/11/35 诱导表达诱导表达(induction
3、expression)有一些基有一些基因表达极易受环境影响,在特定环境信号因表达极易受环境影响,在特定环境信号刺激下,基因的表达开放或增强。刺激下,基因的表达开放或增强。w阻遏表达阻遏表达(repression expression)在特定在特定环境信号刺激下,基因的表达关闭或减弱。环境信号刺激下,基因的表达关闭或减弱。w协调表达协调表达:在生物体内在生物体内,各种代谢途径有条不各种代谢途径有条不紊地进行紊地进行,这是在一定机制控制下这是在一定机制控制下,功能相关功能相关的一组基因的一组基因,协调一致协调一致,共同表达。共同表达。2020/11/36 基因表达调控的生物学意义基因表达调控的生物
4、学意义适应环境、维持生长和增殖适应环境、维持生长和增殖维持个体发育与分化维持个体发育与分化基因表达调控的环节:基因表达调控的环节:基因活化、转录、转录后加工、翻译、基因活化、转录、转录后加工、翻译、翻译后加工翻译后加工2020/11/37 第一节第一节 原核生物基因表达调控原核生物基因表达调控一、转录水平的调控是原核生物的主要调控环节一、转录水平的调控是原核生物的主要调控环节原核生物基因多以操纵子形式存在。操纵子原核生物基因多以操纵子形式存在。操纵子由调控区和信息区组成。上游调控区包括启由调控区和信息区组成。上游调控区包括启动子与操纵元件二部分。启动子是同动子与操纵元件二部分。启动子是同RNA
5、RNA聚聚合酶结合并启动转录的特异性合酶结合并启动转录的特异性DNADNA序列,操序列,操纵元件是特异的阻遏物结合区。纵元件是特异的阻遏物结合区。2020/11/38 影响原核生物转录的因素影响原核生物转录的因素 1 1、启动子、启动子 2 2、因子的种类与浓度因子的种类与浓度 3 3、阻遏蛋白、阻遏蛋白 4 4、正调控蛋白、正调控蛋白 5 5、倒位蛋白通过、倒位蛋白通过DNADNA重组倒位而调节基因表达重组倒位而调节基因表达 6 6、衰减子、衰减子 7 7、RNARNA聚合酶抑制物聚合酶抑制物2020/11/39 1 1、启动子、启动子 促进促进DNADNA转录的转录的DNADNA顺序,是顺
6、序,是DNADNA分子上可与分子上可与RNA polRNA pol结结合并使之转录的部位。又称启动基因,但启动子本身不被合并使之转录的部位。又称启动基因,但启动子本身不被转录。转录。 如如E.coliE.coli启动子全长约启动子全长约404060bp60bp,3 3个功能部位,个功能部位,2 2个个重要功能:重要功能:(1 1)起始部位:)起始部位: 转录合成的第一个互补碱基对,用转录合成的第一个互补碱基对,用+1+1表表示,左为上游,右为下游,用负、正表示,没有示,左为上游,右为下游,用负、正表示,没有O O的位置。的位置。(2 2)结合部位:)结合部位: RNA pol RNA pol
7、与启动子结合位置,位于与启动子结合位置,位于- -10bp10bp,同源性强,又称,同源性强,又称TATA boxTATA box或或pribnowpribnow盒。盒。(3 3)识别部位:)识别部位: 位于位于-35bp-35bp,RNApolRNApol识别启动子部位,识别启动子部位,保守性极强。保守性极强。2020/11/310 (1 1)决定转录方向及那一条)决定转录方向及那一条DNADNA链作模板。链作模板。(以信息(以信息链的互补链作模板,转录链的互补链作模板,转录mRNAmRNA与信息链一致)与信息链一致)(2 2)决定转录效率。)决定转录效率。 E.coliE.coli启动子,
8、在启动子,在-35-35、1010的的两个区序列称为一致性序列。通过比较大量的两个区序列称为一致性序列。通过比较大量的E.coliE.coli启动子,表明这两个序列中各碱基的出现频率为启动子,表明这两个序列中各碱基的出现频率为-35-35区:区:TGACATGACA;-10-10区:区:TATAATTATAAT。如果某一个启动子与上述序。如果某一个启动子与上述序列越接近,基因的转录效率越强。反之就弱。列越接近,基因的转录效率越强。反之就弱。启动子功能:启动子功能:2020/11/311原核生物转录起始区的一致性序列原核生物转录起始区的一致性序列2020/11/312 2、 因子的种类与浓度因子
9、的种类与浓度不同的因子不同的因子可以竞争性的结合可以竞争性的结合RNARNA聚合酶聚合酶, ,环境变化可环境变化可产生特定的产生特定的因子,从而打开一套特定的基因。因子,从而打开一套特定的基因。通过对通过对大肠杆菌基因组序列分析后,发现存在大肠杆菌基因组序列分析后,发现存在6种种因子,并因子,并根据其相对分子质量的大小或编码基因进行命名。根据其相对分子质量的大小或编码基因进行命名。因子705438322824编码基因rpoDrpoNrpoHrpoSrpoFrpoE主要功能参与碳代谢过程基因的调控参与多数氮源利用基因的调控参与分裂间期特异基因表达调控热体克基因的表达调控鞭毛趋化相关基因的表达调控
10、过渡热休克基因的表达调控2020/11/313 3、阻遏蛋白、阻遏蛋白阻遏蛋白是一类在转录水平对基因表达产生负调控作用阻遏蛋白是一类在转录水平对基因表达产生负调控作用的蛋白质。根据其作用特征可分为的蛋白质。根据其作用特征可分为负控诱导负控诱导和和负控阻遏负控阻遏二大类。在负控诱导系统中,阻遏蛋白不与效应物(诱二大类。在负控诱导系统中,阻遏蛋白不与效应物(诱导物)结合时,结构基因不转录;在负控阻遏系统中,导物)结合时,结构基因不转录;在负控阻遏系统中,阻遏蛋白与效应物结合时,结构基因不转录。阻遏蛋白阻遏蛋白与效应物结合时,结构基因不转录。阻遏蛋白作用部位是操纵区。作用部位是操纵区。2020/11
11、/314 4、正调控蛋白、正调控蛋白正调控蛋白结合于特异正调控蛋白结合于特异DNA序列后,具有促进基因的序列后,具有促进基因的转录,这种基因表达调控的方式称为正调控。根据正调转录,这种基因表达调控的方式称为正调控。根据正调控蛋白的作用性质分为控蛋白的作用性质分为正控诱导系统正控诱导系统和和正控阻遏系统正控阻遏系统。在正控诱导系统中,效应物分子(诱导物)的存在使正在正控诱导系统中,效应物分子(诱导物)的存在使正调控蛋白处于活性状态;在正控阻遏系统中,效应物分调控蛋白处于活性状态;在正控阻遏系统中,效应物分子的存在使激活蛋白处于非活性状态。子的存在使激活蛋白处于非活性状态。2020/11/315
12、5 5、倒位蛋白通过、倒位蛋白通过DNADNA重组倒位而调节基因表达重组倒位而调节基因表达倒位蛋白是一种位点特异性的重组酶倒位蛋白是一种位点特异性的重组酶。2020/11/316 6、衰减子、衰减子衰减子又称为弱化子,位于一些操纵子中第一个结构衰减子又称为弱化子,位于一些操纵子中第一个结构基因之前,是一段能减弱转录作用的序列。如色氨酸基因之前,是一段能减弱转录作用的序列。如色氨酸操纵子序列内含有一段衰减子序列操纵子序列内含有一段衰减子序列.7、RNA聚合酶抑制物聚合酶抑制物细菌在缺乏氨基酸的环境中,细菌在缺乏氨基酸的环境中,RNARNA聚合酶活性降低,聚合酶活性降低,RNARNA(rRNA,t
13、RNArRNA,tRNA)合成减少或停止,这种现象称为)合成减少或停止,这种现象称为严谨反应严谨反应。机制:当氨基酸缺乏时,游离核糖体与空载的机制:当氨基酸缺乏时,游离核糖体与空载的tRNAtRNA增加,增加,在在ATPATP存在下,产生存在下,产生pppGpppppGpp和和ppGppppGpp,后者与,后者与RNARNA聚合酶结聚合酶结合形成复合物,进而使合形成复合物,进而使RNARNA聚合酶构象变化,活性降低。聚合酶构象变化,活性降低。2020/11/317 二、转录的调控机制二、转录的调控机制在大肠杆菌的许多操纵子中,基因的转录不是由单一在大肠杆菌的许多操纵子中,基因的转录不是由单一因
14、子调控的,而是通过负调控因子和正调控因子进行因子调控的,而是通过负调控因子和正调控因子进行复合调控的。比较典型的是一些糖代谢有关的操纵子。复合调控的。比较典型的是一些糖代谢有关的操纵子。乳糖操纵子调控的机制阿拉伯糖操纵子的调控机制色氨酸操纵子的调控机制2020/11/318 操纵子模型的提出操纵子模型的提出 莫洛莫洛(Monod)(Monod)和雅各布和雅各布(Jacob)(Jacob) 获获19651965年诺贝尔生理学和医学奖年诺贝尔生理学和医学奖2020/11/319 (1)人们早在上个世纪初就发现了酵母中酶的诱导现象。即分解底物的酶只有底物存在时才出现。酶受底物的诱导,这种可诱导现象在
15、细菌中普遍存在。 在培养基中加入适合底物-乳糖或半乳糖后23分钟,一半乳糖苷酶可迅速达到5000个酶分子,增加了1000倍,占细菌蛋白总量的510%。 (一半乳糖苷酶水解乳糖半乳糖+葡萄糖 2个单糖)。 若撤消底物,该酶合成迅速停止,就象当初迅速合成一样。从60年代乳糖操纵子模型提出1966年分离得到该操纵子的阻遏蛋白1975年乳糖操纵子的碱基序列已全部测定清楚了。1.1.乳糖操纵子的调控机理(可诱导的操纵子)乳糖操纵子的调控机理(可诱导的操纵子)2020/11/320 (2)乳糖操纵子(Lactose operon ,Lac operon)结构示意图CAPCAMPIPOZYA结构基因区(信息
16、区)RNA pol调控区调控区 I-调节基因P-启动子O-操纵基因(OP有一定的重叠)CAP结合位点结构基因Z-半乳糖苷酶基因( -galactosidase)Y-半乳糖苷透酶(乳糖透酶)( -galotoside porinerase)A-硫代半乳糖转乙酰基酶(trans acetylase)2020/11/321(3 3)调控机理)调控机理 乳糖操纵子的转录起始受到乳糖操纵子的转录起始受到CAP和阻遏蛋白的双重调控,即正、和阻遏蛋白的双重调控,即正、负调控。负调控。 CAP(正控)(正控):通过通过结合到启动子上游结合到启动子上游CAP结合位点,促进结合位点,促进RNA pol与与P的结合
17、,才能有效的转录,原因是:的结合,才能有效的转录,原因是: Lac p 是弱启动子,与一致序列的差异极大是弱启动子,与一致序列的差异极大,CAP位点结合位点结合cAMP-CAP复合物后,复合物后,改变了改变了RNA pol空间结构空间结构,增强增强了了RNA pol与与P的结合的结合的牢固性。所以的牢固性。所以CAP是是Lac operon 的正控因子。的正控因子。 阻遏蛋白(负控)阻遏蛋白(负控) 调节基因调节基因I(除(除Lac operon用用I外,其余均用外,其余均用R)产生的阻遏蛋)产生的阻遏蛋白结合到操纵基因白结合到操纵基因O上,由于上,由于启动子启动子p与操纵基因有一定的重叠,与
18、操纵基因有一定的重叠,妨碍妨碍RNA pol与与P的结合,的结合,就抑制了结构基因的转录,诱导物(或就抑制了结构基因的转录,诱导物(或称效应物)可以去阻遏,实现对基因的转录,这是称效应物)可以去阻遏,实现对基因的转录,这是Lac operon的的负控机制。负控机制。2020/11/322 CAP结合到CAP位点发挥正控作用,乳糖诱导去阻遏,这样1个操纵子中的1组基因就有2道开关,只有2道开关同时打开时,基因才能转录。2个CAP分子和RNA pol 在Lac p 一致序列上排列CAPCAP-35RNA pol-10IPOZYADNAmRNA阻遏蛋白效应物(半乳糖)ZYA基因产物(酶)CAPCAP
19、2020/11/323 细菌优先利用葡萄糖(细菌优先利用葡萄糖(G G)- -葡萄糖效应葡萄糖效应 如果细菌生长环境中,乳糖、葡萄糖同时存在,尽管有诱导物乳糖存在,但细菌优先利用葡萄糖,不予理睬乳糖,在G耗尽之前,Lac operon也不会表达。也就是说G阻碍了Lac operon的表达。这种G效应在半乳糖、阿拉伯糖操纵子中也存在。 G效应的原因是: G降解代谢产物可以抑制腺苷环化酶、 激活磷酸二酯酶,结果使胞内cAMP下降;CAP的正调控需要结合cAMP形成复合物才能结合到CAP结合位点; 当G耗尽,cAMP开始集累,cAMP和CAP结合使CAP变构才能结合到CAP结合位点上,促进RNA p
20、ol与P结合。 2020/11/324 结合乳糖、葡萄糖存在与否及与操纵子正、负控因素、基因结合乳糖、葡萄糖存在与否及与操纵子正、负控因素、基因开放与关闭情况如下:开放与关闭情况如下:葡萄糖(G) 乳糖 基因开放 基因关闭 机理简述(学生填充) CAP正控、乳糖去阻遏、基因开放、 转录进行 不能诱导去阻遏,CAP即使结合,基因未开放 细菌优先用G,无CAP结合,无诱导去阻遏 cAMP-CAP复合物无,CAP位点空,乳糖去阻 遏,基因未开放2020/11/3252.色氨酸操纵子(trp operon)结构特点结构特点E.coli的色氨酸操纵子有五个结构基因的色氨酸操纵子有五个结构基因E、D、C、
21、B、A基因编码三种酶,用于合成色氨酸,基因编码三种酶,用于合成色氨酸,上游调控区由启动子(上游调控区由启动子(P)和操纵基因()和操纵基因(O)组成组成调节基因调节基因R:编码阻遏蛋白:编码阻遏蛋白2020/11/326 2020/11/327 无色氨酸无色氨酸操纵子基因开始转录,此后转录速操纵子基因开始转录,此后转录速率受转录率受转录衰减机制衰减机制(attenuation)调节调节结构基因与结构基因与 O 之间有一个之间有一个L基因,在基因,在L基因内存在一基因内存在一个衰减子。个衰减子。衰减子:有衰减子:有4段特殊的序列,可形成不依赖段特殊的序列,可形成不依赖因子的因子的转录终止信号。转
22、录终止信号。前导肽编码区转录产物中含两个相邻的前导肽编码区转录产物中含两个相邻的色氨酸密码子色氨酸密码子,这两个,这两个密码子以及原核生物中密码子以及原核生物中转录与翻译偶联是产生衰减作用的基础。转录与翻译偶联是产生衰减作用的基础。1234终止密码前导肽编码区UUUUU四个片段之间形成发夹能力四个片段之间形成发夹能力:1/22/33/4,四个片段形成,四个片段形成何种发夹结构,是由何种发夹结构,是由L基因转录物的翻译过程控制的。基因转录物的翻译过程控制的。2020/11/328 当有色氨酸时无色氨酸时2020/11/329 色氨酸操纵子中的操纵基因和衰减子可以起双重负色氨酸操纵子中的操纵基因和
23、衰减子可以起双重负调节作用。衰减子可能比操纵基因更灵敏,调节作用。衰减子可能比操纵基因更灵敏, 只要只要色氨酸一增多,即使不足以诱导阻遏蛋白结合操纵色氨酸一增多,即使不足以诱导阻遏蛋白结合操纵基因,就足可以使大量的基因,就足可以使大量的mRNAmRNA提前终止。反之,当提前终止。反之,当色氨酸减少时,即使失去了诱导阻遏蛋白的阻遏作色氨酸减少时,即使失去了诱导阻遏蛋白的阻遏作用,但只要还可以维持前导肽的合成,仍继续阻止用,但只要还可以维持前导肽的合成,仍继续阻止转录。这样可以保证细菌对色氨酸的充分利用。防转录。这样可以保证细菌对色氨酸的充分利用。防止堆积。止堆积。2020/11/330 3.阿拉
24、伯糖操纵子(ara operon)调节机制结构特点结构特点结构基因结构基因 B、A、D,分别编码异构酶,分别编码异构酶(isomerase)、激酶()、激酶(kinase)、表位酶)、表位酶(epimerase),),催化阿拉伯糖转变为催化阿拉伯糖转变为5-磷酸木酮磷酸木酮糖糖调控区:调控区:调节基因为调节基因为C基因(编码调控蛋白基因(编码调控蛋白C蛋白)蛋白)、启动子(、启动子(P)、起始区()、起始区(I)和操纵基因()和操纵基因(O)构)构成成2020/11/331 2020/11/332二、翻译水平的调控1、SD序列对翻译的影响序列对翻译的影响nSD序列(Shine-Dalgarno
25、 sequence): mRNA起始密码前的一段富含嘌呤核苷酸的序列。(9-12bp)SD序列的差异对翻译的影响 SD序列位置对翻译的影响2020/11/3332020/11/3342、mRNA二级结构隐蔽SD序列某些mRNA分子中,核糖体结合位点在一个二级结构中(茎环)中,使核糖体无法结合,只有打破茎环结构,核糖体才能结合。例如:带有红霉素抗性的细菌2020/11/335编码区红霉素甲基化酶核糖体23SmRNA上特定位点的一个腺嘌呤甲基化。红霉素终止密码子终止密码子2020/11/336 细菌蛋白质的合成速率的快速改变,不仅是转录与翻译偶联,更重要的与mRNA的降解速度快有关。影响影响mRN
展开阅读全文