书签 分享 收藏 举报 版权申诉 / 42
上传文档赚钱

类型二次曲线复习讲解课件.ppt

  • 上传人(卖家):三亚风情
  • 文档编号:2912956
  • 上传时间:2022-06-10
  • 格式:PPT
  • 页数:42
  • 大小:1.69MB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《二次曲线复习讲解课件.ppt》由用户(三亚风情)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    二次曲线 复习 讲解 课件
    资源描述:

    1、 二次曲线小结二次曲线小结曹杨职校曹杨职校授课授课 人:人:陈开运陈开运二次曲线小结二次曲线小结二次曲线小结附录附录二次曲线发展史二次曲线发展史目标诊断题目标诊断题纲要信号图表纲要信号图表学习导航与要求学习导航与要求概念的精细化概念的精细化曲线的个性与共性曲线的个性与共性技巧与题型归类技巧与题型归类圆圆椭圆椭圆双曲线双曲线双曲线抛物线抛物线双曲线定义的盲点双曲线定义的盲点双曲线的渐近线双曲线的渐近线离心率分析离心率分析直线与双曲线关系直线与双曲线关系几种曲线定义几种曲线定义一般二次方程的讨论一般二次方程的讨论曲线与方程曲线与方程Excel作图作图曲线的切线曲线的切线观看网上动态曲线圆的学习要求

    2、和导航圆的学习要求和导航n学习要求:n掌握由圆的定义推导圆的标准方程,理解参数 a,br的几何意义,掌握一般方程和标准方程的互化,用圆方程解决有关问题,解决直线与圆、圆与圆的位置关系。n学习导航:n圆的定义与标准方程 圆的几何定义 n几何量间的关系d(P,M)=r 代数等式 (x-a)2+(y-b)2=r2 ,a,b,r的意义。n由(x-a)2+(y-b)2=r2 x2+y2+Dx+Eyn+F=0 且与Ax2+Bxy+Cy2+Dx+Ey+F=0比较,得出圆方程 A=C0,B=0, 且D2+E2-4F0nx2+y2+Dx+Ey+F=0的圆心(-D/2,-E/2)n半径 r= n圆与直线的关系,圆

    3、心M(a,b),半径rn直线 Ax+By+C=0,dr相离,d=r相切,dr1+r2位置关系同心内含内切相交外切外离继续圆的公式图形直角坐标方程参数方程过圆上一点( x0,y0)的切线圆心在原点,半径为圆心在原点,半径为rx2+y2=r2* x=rcos y=rsinx0 x+y0y=r2圆心在(r,0),半径为rx2+y2=2rx* x=r(1+cos) y=rsinxox+yoy=r(x+xo)圆心在(a,b),半径为r(x-a)2+(y-b)2=r2* x=a+rcos y=b+rsin(x0-a)(x-a)+(y0-b)(y-b)=r2圆心在(-D/2,-E/2),半径为x2+y2+D

    4、x+Ey+F=0 x0 x+y0y+D(x+x0)/2+E(y+y0)/2+F=0*过三点A(x1,y1),B(x2,y2)C(x3,y3)的圆 x2+y2 x y 1 x12+y12 x1 y1 1 x22+y22 x2 y2 1 =0 x32+y32 x3 y3 1*过圆x2+y2+D1x+E1y+F1=0 和圆x2+y2+D2x+E2y+F2=0的交点的圆 m(x2+y2+D1x+E1y+F1 )+n(x2+y2+D2x+E2y+F2)=0 其中m,n不同时为零 4422FED回主页回主页椭圆的学习要求与导航n学习要求n知道椭圆定义并推出椭圆标准方程,理解参数a,b,c,e 的相互关系和

    5、几何意义。n能灵活应用椭圆定义、方程及性质解决问题(椭圆作图)。n学习导航n椭圆方程的定义及参数a,b,c,(e)是椭圆所特有的,与坐标无关。 ab0,c2=a2-b2,(e=c/a)必须牢固掌握。n椭圆的性质(有心、封闭的曲线),椭圆曲线的范围,掌握曲线(椭圆)对称性的判别,与坐标轴的交点。n特别:n1.椭圆的焦点一定在长轴上,n2. a,b,c三个参数的关系是满足以 a为斜边的 直角三角形勾股定理a2=b2+c2。n3.标准方程中a对应的变量x(或y),表明焦点就在x轴(或y轴)。n直线与椭圆的位置关系:n把直线与椭圆的方程组消元后得一元二次方程,它的判别式0直线与椭圆相交n=0直线与椭圆

    6、相切n 0n离心率取值范围:椭圆:2c2a,故0e2a,得 e1,按抛物线定义,e=1。n离心率与圆周率是几何中的两大比率,它们的共同特点:均为两个定量的有序之比,区别在于前者适用于二次曲线,后者只适用于圆;e值有相对的任意性(可变),却具有唯一性(无理常数)。n离心率深刻揭示了二次曲线的实质,沟通了它们的关系。椭圆,双曲线,抛物线三者关系密切,是同一定义n下的不同表现。三种曲线可统一定义为:平面内到一定点和一定直线的距离之比等于常数e的动点轨迹叫二次曲线。n建立适当的坐标,轨迹上任一点M(x,y),定点F(p,0)所以n 整理即得n(1-e2)x2+y2-2px+p2=0当0e1方程分别是椭

    7、圆,抛物线,双曲线。n“对立统一,量变到质变”ne 0椭圆 圆,e 1,椭圆变得愈来愈扁,e=1为抛物线,e1为双曲线,e 增大,则nb/a= 也变大,双曲线开口变大,反之,开口变小。 E趋向于1时,渐近线倾斜角近于0。exypx22)(12e回主页回主页圆锥曲线(圆锥截线) 点(点圆)圆椭圆双曲线抛物线圆锥曲线退化为两条直线, 一条直线你能说出截面的你能说出截面的条件吗?条件吗?圆锥的顶角影响圆锥的顶角影响曲线形状吗?曲线形状吗?回主页回主页继续继续二次曲线的发展史n公元前四世纪,古希腊学者梅纳科莫斯最早通过截割圆锥的方法得到三种不同类型的曲线椭圆(圆)、双曲线、抛物线,统称圆锥曲线。许多学

    8、者继续研究这一课题,最有成就的是生于小亚细亚佩加城的阿波罗尼,他将自已的成果写成八大卷的圆锥曲线论,成为这一课题的经典文献。n十六世纪,著名天文学家开普勒发现行星按椭圆形轨道运行,著名天文学家伽里略证明了不计阻力的斜抛运动的轨迹是抛物线。这说明了圆锥曲线并不是附生于圆锥之上的静态曲线,而是自然界中物体常见的运动形式。n1629年,法国数学家费马在平面和立体轨迹引论一书中,运用斜角坐标研究圆锥曲线,证明了圆锥曲线的方程都是含有二个未知数且最高次幂是二次的方程。反之,一般二元二次方程点的轨迹是圆锥曲线。1655年,英国数学家沃利斯在圆锥截线论中,干脆把圆锥曲线叫作二次曲线。n1748年,著名数学家

    9、欧拉在无穷小分析引论一文中,详细讨论了形如:Ax2+Bxy+Cy2+Dx+Ey+F=0n的一般二次方程,证明经过平移、转轴变换,任何一个二次方程可以化为椭圆(圆)、双曲线、抛物线及它们的退化形式,所以二次曲线就是圆锥曲线。回主页椭圆双曲线抛物线基本性质椭圆椭圆双曲线双曲线抛物线抛物线图形图形标准方程标准方程 (abo) (a0,b0)y2=2px中心中心(0,0) 有心 封闭曲线(0,0) 有心开放曲线 无心曲线顶点顶点(a,0),(0,b)(a,0)轴轴对称轴:x轴,y轴长轴:2a 短轴:2b对称轴:x轴,y轴实轴:2a 虚轴:2b对称轴:x轴 焦点焦点F1(-c,0) F2(c,0)|F1

    10、F2|=2cF1(-c,0) F2(c,0)|F1F2|=2c F(p/2,0)离心率离心率 e=c/a 0 e1e=1 范围范围|x|a,|y|b 封闭曲线|x|a. yR 开放曲线x0,yR 开放曲线准线准线 x=a2/cx=a2/c 渐进线 y=bx/ax=-p/212222byax12222byax22bac22bac回主页一些常用技能技巧的梳理一些常用技能技巧的梳理n在巩固求曲线方程、应用曲线方程的基础上,练习常用的技能技巧,提高解题能力。1.建立适当的坐标系 应用解几方法解题,必须建立坐标系,而且选定恰当的坐标系(一般是以原点、坐标轴对称的,或以原点为起点),简化曲线方程。2.充分

    11、利用圆锥曲线特有的几何性质。例如:m为何值时,直线2x-y+m=0和圆x2+y2=5无公共点?截得弦长为2?交点处两条半径互相垂直?解:圆心(0,0)到直线距离d=圆半径r= , 时即m5时圆和直线无公共点。弦过中点的半径垂直于弦r2-d2=1即5-m2/5=1当m= 时圆在直线上截得弦长为2 此时弦与过n弦两端的半径组成等腰直角三角形nn时过弦两端的半径互相垂直。3 .圆锥曲线定义的应用有些题目从表象上看较难,但用圆锥曲线定义解题,问题迎刃而解。5m555md 522255225,22mmrd即继续继续一些常用技能技巧的梳理一些常用技能技巧的梳理n如图n双曲线方程 的左焦点作弦交曲线于A,B

    12、,连接AF2和 BF2,求|AF2|+|BF2|-|AB| 的值n解:|AF2|-|AF1|=2a=8, |BF2|-|BF1|=2a=8, |AF2|+|BF2|-|AB| 的值为16。n曲线系方程的应用n方程f1(x,y)+f2(x,y)=0表示的曲线经过曲线f1(x,y)=0和曲线f2(x,y)=0的交点(A1x+B1y+C1)+(A2x+B2y+C2)=0表示过直线A1x+B1y+C1=0,A2x+B2y+C2=0的 交点的一系列直线。你能写出圆系列方程和双曲线系列方程吗?例题:一个圆经过已知圆x2+y2-x+y-2=0和x2+y2=5的交点,且圆心在直线3x+4y-1=0上求圆方程。

    13、解:设所求圆方程为( x2+y2-x+y-2)+ (x2+y2-5)=0即(1+)x2+(1+)y2-x+y-(2+)=0其圆心为(1/(2+2),-1/(2+2)在已知直线上,得=-1.5,所求方程为:X2+y2+2x-2y-11=0191622yx01)1 (24)1 (23前一页继续一些常用技能技巧的梳理一些常用技能技巧的梳理n韦达定理的应用:例题1:已知直线l 过(1,0)点,倾斜角为/4,求 l在椭圆x2+2y2=4 上截得的长?解:直线方程为y=x-1代入椭圆方程x2+2y2=4 ,得3 x2 -4x-2=0设所截交点为AB |AB|2 =(x2-x1)2+(y2-y1)2 =2(

    14、x2-x1)2 =2(x2+x1)2 -4 x2x1 ) =80/9 |AB|=回主页继续继续534一般二次方程的讨论n一般二次方程Ax2+Bxy+Cy2+Dx+Ey+F=0经过旋转变换,适当选取角,化成nAx2+Cy2+Dx+Ey+F=0n关键看AC是否有一个为零?都不为零时它们是同号还是异号来决定。经过变换,-4AC=B2-4AC。= B2-4AC为二次方程判别式。方程Ax2+Bxy+Cy2+Dx+Ey+F=0条件 类型 一 般 情 况 特殊情况B2-4AC0双曲线型双曲线两条相交直线B2-4AC=0抛物线型抛物线两条平行线或一条直线或没有轨迹回主页回主页课堂训练题选择题1.如果方程x2+

    15、ky2=2表示焦点在 y轴上的 椭圆,那么实数k 的取值范围是:A.(0, )B.(0,2) C(1,)D(0,1)2.焦点在(-1,0),顶点在(1,0)的抛物线方程是:A.y2=8(x+1) B. y2=-8(x+1)C. y2=8(x-1) D. y2=-8(x-1)3.椭圆x2+9/5 y2=36的离心率为:A.1/3 B.2/3 C.1/2 D.3/4 4. 设椭圆 的两个焦点分别是F1和F2, 短轴的一个端点是B,则B F1 F2的周长是:A. B. C. D.5.若抛物线y2=2x上一点到焦点距离为5,则该14522yx535152522点的坐标是:A.(4,2 )或(4,-2

    16、)B.(5, )或(5,- )C.(4.5,3)或(4.5,-3) D(6,2 )或(6,-2 )6.以坐标轴为对称轴,中心在原点,实轴长为10,焦距为12 的双曲线方程是:A.x2/25 -y2/11 =1 或.y2/25 x2/61 =1 B. .x2/25 -y2/11 =1 或y2/25 x2/11 =1C. x2/61 -y2/25 =1 或y2/25 x2/61 =1D. x2/61 -y2/25 =1 或y2/25 x2/11 =17.若方程 表示双曲线,则 k 的值的范围是:A.k25 C.16k25 D.k252255331162522kykx你能做对多少题?继续继续回主页回

    17、主页圆的目标诊断题1. 写出圆心在(0,-3),半径是 的圆方程。(A1)2. 下列方程表示社么图形: (1) (x-3)2+y2=0; (2) x2+y2-2x+2y-2=0; (3) x2+y2+2ab=0。(B1)3. 写出过圆x2+y2-25=0上一点M(-2 ,1)的切线的方程。(B2)4.求下列条件所决定的圆的方程: (1)圆心在(3,4),且与直线6x+8y-15=0相切;(C1) (2) 经过点A(2,-1),与直线x-y-1相切;且圆心在直线y=-2x上; (3)经过A(5,1), B(-1,2), C(1,-3)三点。5. 求经过点P(0,10),且与x轴切于原点的圆的方程

    18、,并判断点A(-5,5), B( ,6), , C(3,-10),在圆内,在圆外,还是在圆上。6.判断直线3x+4y-24=0与圆x2+y2+6x-4y-12=0的位置关系。7. 求证:两圆x2+y2+-4x-4=0与 x2+y2+6x+10y+16=0互相外切。8.求圆的切线方程:(1)与圆(x+1)2+(y-3)2=25切于点A(3,6)的切线方程。(2)若圆x2+y2=13的切线平行于直线4x+6y-5=0,求这切线的方程。(3)过点A(4,0)向圆x2+y2=1引切线,求这切线的方程。9.一圆拱桥跨度长12米,拱高3米,以拱弦所在的直线为x 轴,弦的中点为原点建立直角坐标系,求这圆拱曲

    19、线的方程。362继续圆的目标诊断题答案n1. x2+(y-3)2=3n2.(1)点(3,0)(2)以(1,-1)为圆心、2为半径的圆(3)x2+(y+b)2=b2n3.n4 .(1)(x-3)2+(y-4)2=49/4n(2)(x-1)2+(y+2)2=2或n(x-9)2+(y+18)2=338n(3)7x2+7y2 25x-3y-54=0n5. x2+(y-5)2=25,A点在圆上,B点在圆内,C点在圆外n6.直线与圆相切n7. 故两圆外切n8.(1)4x+3y-30=0,(2)2x+3y=13=0n(3)n9 . x2+(y+9/2)2=225/4(y0)02562 yx212125rro

    20、o)4(1515xy椭圆目标诊断题n1.求适合下列条件的椭圆的标准方程n(1) a= ,b=1,焦点在x轴上n(2)a=5,c= ,焦点在y轴上n(3)a=6,e=1/3,焦点在x轴上n(4)b=4,e=3/5,焦点在y轴上n2.利用椭圆的面积公式 S= ab,求下列椭圆的面积n(1) 9x2+25y2 =225n(2)36x2+5y2 =180n3.求下列椭圆长轴和短轴的长,离心率,焦点坐标,顶点坐标和准线方程,并画出草图。n(1)4x2+9y2 =36n(2)9x2+y2 =81n4.求适合下列条件的椭圆的标准方程n(1)长轴是短轴的5倍, 且过点(7,2)焦点在x轴上n焦点坐标是(0,-

    21、4),(0,4)n且经过点( )n5.求直线x-y+ =0和椭圆x2/4+ny2 =1的交点 6.点P与一定点F(4,0)的距离和它到一定直线x=25/4的距离之比是45,求点P 的轨迹方程。 7 .地球的子午线是一个椭圆,两个半轴之比是299/300,求地球子午线的离心率。31733,5 5继续答案答案回主页回主页椭圆目标诊断题的答案1.(1)x2 /3+y2=1,(2) x2 /8+y2 /25=1(3) x2 /36+y2 /32=1,(4) x2 /16+y2 /25=12.(1)15 ,(2) 3. (1)2a=6,2b=4,e= ,F( ,0)顶点(3,0),(0,2)准线方程 (

    22、2)2a=18.2b=6,e= F(0, )顶点(3,0),(0,9)准线方程:4. (1)x2 /149+25y2 /149=1 (2) x2 /20+y2 /36=15.6. x2 /25+y2 /9=17.56355559x232262427y)55,554(300599前一页前一页双曲线目标诊断题1.求适合下列条件的双曲线标准方程:(1)a=3,b=4,焦点在x轴上(2)a= ,c=3,焦点在 y轴上(3) a=6,e=3/2 ,焦点在x轴上 (4) b= ,e=3/2,焦点在x轴上2. 求下列双曲线的实轴和虚轴长,顶点和焦点坐标,离心率,渐近线和准线方程,并画出草图。(1) x2 -

    23、4y2=4(2) 9x2 -16y2=-1443.求双曲线的标准方程(1)实半轴是 ,经过点 焦点在y 轴上(2)两渐近线方程是y=3/2x,经过点n4.求直线3x-y+3=0和双曲线x2 -y2 /4=1的交点n5.点P与定点(6,0)及定直线x=16/3的距离之比是n求点P的轨迹方程n6.求以椭圆x2 /25 +y2/9=1 的焦点为顶点,顶点为焦点的双曲线方程。n7.两个观察点的坐标分别是A(200,0)、B(-200,0),单位是米,A点听到爆炸声比B点早1.08秒,求炮弹爆炸点的曲线方程。n8.求证:当k9,k4时,方程n 所表示的圆锥曲线有共同的焦点。51452)53, 2( )2

    24、, 2(4:2314922kykx继续答案答案回主页回主页双曲线目标诊断题答案n1.(1)x2 /9-y2/16=1n (2) y 2/5 -x2/4=1n (3)x2 /36-y2/45=1n (4) y 2/2-x2/14=1n2.(1)2a=4.2b=2,顶点(2,0)nF( ,0),e= ,渐近线方程 y=1/2x,准线方程x=n(2)2a=6,2b=8,顶点( 0,3)nF(0,5),e=5/3,渐近线方程:nY=3/4x,准线方程 y=9/5n3.(1)y 2/20 -5x2/16=1n (2)9x2 -4y2=2n4.(-1,0)和(-13/5,-24/5)n5. x2 -8y2

    25、=32n6. x2/16-y2/9=1n7.n8. (1)当k4时 ,方程表示椭圆,焦点在x轴,此a2=9-k,nb2=4-k,c2=a2-b2=5,F( ,0)(2) 当4k0)上一点M到焦点的距离是4,求点M到准线的距离。2. 写出适合下列条件的抛物线方程(1)焦点是F(-3,0)(2)准线方程是x=-1/2 (3)焦点到准线的距离是1/23. 求下列抛物线的焦点坐标和准线方程(1) y2+4x=0 (2) 2x2-3y=04.推导抛物线的标准方程y2=-2px(p0)5.根据下列条件,求抛物线的方程,并描点画出图形(1)顶点在原点,对称轴是y轴,且顶点与焦点的距离等于2 (2)顶点在原点

    26、,对称轴是x轴,且经过 (-3,2)点n6. 已知一等边三角形内接于抛物线y2=2x,且一个顶点在原点,求其他两个顶点的坐标。n7. 已知抛物线型的拱桥的顶点距水面2米时,量得水面宽为8米,当水面升高1米后,求水面的宽。n8 .抛物线顶点是椭圆16x2 +25y2=-400的中心,焦点是椭圆的右焦点,求这抛物线的方程n9.把抛物线通径的两端分别与准线和抛物线轴的交点连接,证明这两条直线互相垂直。答案答案回主页回主页抛物线目标诊断题答案1,42,(1) y2=-12x ,(2) y2=2xn(3) y2=-x,或x2=y3,(1)F(-1,0),准线方程:x=1, (2)F(0,3/8), 准线

    27、方程y=-3/85, (1) x2=8y, (2) y2=-4/3x 6,7,8, y2=12x ,9,通径两端为(p/2,p),(p/2,-p),准线与抛物线轴的交点(-p/2,0),kAC*kBC=-1)32, 6( 米24回主页前一页椭圆双曲线抛物线除课本的定义外还有准线定点,极坐标、圆锥截线等定义范围对称性顶点定义范围对称性顶点范围范围对称性对称性顶点顶点性质共性都是二次曲线 圆锥截线对称性 准线定点离心率 极坐标都有焦点概念精细化直线与双曲线的位置关系双曲线与渐近线的定量分析再说说曲线与方程的两句话曲线方程与函数的关系 Excel画画曲线图形曲线图形请你探索网络上的二次曲线图形,归纳

    28、为几句话.纲要信号图表纲要信号图表竞争又合作实际应用1.力学结构 拱桥 散热塔 网络结构 储槽容器2. 光学性质 卫星天线 雷达 激光器 光学器件3.运动轨迹 弹道 天体轨道 4. 测量定位 卫星定位GPS B超 声纳JAVAAVA学生小结学生小结求曲线轨迹 椭圆、双曲线、抛物线定义和参数的题目点、直线与曲线的位置关系 曲线作图 曲线的切线二次曲线的实际应用 回主页回主页概念的精细化在“曲线的方程”、“方程的曲线”的定义中为什么要作两条规定?我们可以从集合的观点来认识这个问题。大家知道,一条曲线和一个方程 f (x,y)=0可以是同一个点集在“形”和“数”两方面的反映,只有当曲线所表示的点集C

    29、与方程 f (x,y)=0的解所表示的点集F是同一个点集,也就是C=F时,曲线才叫做方程的曲线,方程叫曲线的方程。而两个集合C=F,必须从两个方面说明:1,C中的任何一点属于F,记曲线上任一点的坐标是f (x,y)=0的解2,F中的任何一点也属于C,即以 f (x,y)=0的解为坐标的点在曲线上。说明了:曲线上的点与方程的解满足一一对应的关系。 求曲线方程的依据,适合方程的解一定在曲线上,不适合条件的点一定不在曲线上。 直线视作曲线的特殊情况n曲线方程与函数的关系?n曲线方程与函数的主要不同在于:n(1)曲线方程反映了 x,y 的数量上的相互制约关系,无“依从”关系,取定一个x, y不一定唯一

    30、确定,同样取定一个y后x 也不一定唯一确定,x与y无“自变量”“应变量”的“主从”关系。n(2)函数则反之,取定义域中每一个x, 都有唯一的y与之对应。n就曲线而言,称x, y的取值范围,对函数而言,分别趁x ,y的定义域和值域。n(3)函数表达式y=f(x)n 曲线方程表达式为f(x,y)=0回主页回主页二次曲线题型之一1,曲线与方程1)判断已知点是否在曲线上2)已知方程可分解为f1(x,y)=0,f2 (x,y)=0,.fn (x,y)=0,那么这方程的曲线由n个f1(x,y)=0, f2 (x,y)=0, . fn (x,y)=0 来确定。2,求两条曲线交点代入或加减法消元,用判别几个解

    31、。3,点、直线、圆与圆的位置关系 点与圆 点在圆上,圆外,圆内(点与圆心距离和半径比较或点坐标代入方程0,=0,0 k0 k4 即k0 或 9-k0 4-k0 解之4x9, 方程表示是双曲线)0(12222babyax1162522yx) 0(12222baaybx1251622yx21)2()2(22yxyx14922kykx14922kykx14922kykx前一页前一页继续继续二次曲线题型之四作图题1,用课本介绍的列表,描点,对称的方法2,用Excel作图法坐标平移题例题1:平移坐标轴,把原点移到o(3,-4)求曲线x2+y2 6x+8y=0在新坐标系的方程解: x=x+3 代入方程x2

    32、+y2 6x+8y=0得 y=y-4 (x+3)2+(y-4)2 6(x+3)+8(y-4)=0化简x2+y2 =25例题2:已知双曲线虚轴为8,顶点坐标(1,2)(-5,2)求双曲线的方程和渐近线方程解:顶点(1,2)(-5,2),曲线中心(-2,2)焦点在y=2上, x=x+2, y=y-2 ,2a=6,2b=8A=3,b=4,双曲线方程是新坐标系中的渐近线方程求轨迹方程1 .直接法求轨迹方程例题9:动点P与二定点F1,F2的连线互相垂直,试求动点P的轨迹方程解:1)建系 取F1,F2所在的直线为x轴,F1,F2的中点为原点,建立直角坐标系,F1(-a,0)F2(a,0) 2)设动点P(x

    33、,y)为所求轨迹上任意点 3)kPF1KPF2 =-1, 4)化简整理 x2+y2=a2 (x a)2.间接法求轨迹方程例题10:已知圆方程x2+y2=22 及点N(6,6)求圆上的点与N点连线中点的轨迹。解:设圆方程x2+y2=22 上一点M(a,b)有a2+b2=22 ,设P(x,y)为轨迹上任意一点动点坐标, ,a=2x-6,b=2y-6代入圆方程得: x2+y2-6x-6y+68=0*3 .参数方程100axyaxy26,26byax前一页前一页继续继续116922yx34xy二次曲线题型之五二次曲线的实际应用问题1.选择适当的标准方程和坐标系一般曲线顶点在原点,与x,y轴对称2.输入

    34、已知坐标点(或其他条件)求出曲线方程。3.输入要求的一点f(x0,y0)的值,解决问题。一般应用有:力学结构:拱桥,散热塔,储槽容 器,建筑结构等。光学性质:会聚和发散电磁波,卫 星天线,激光器,雷达抛物线、双曲线、椭圆的光学性质。 (学生简叙)运动轨迹:弹道,天体轨道,物理 运动。测量定位:卫星定位GPS,声纳等检 测仪器。继续继续前一页前一页二次曲线的应用回主页回主页直线与双曲线的位置关系我们举例说明直线与双曲线的位置关系。双曲线1.当y=3/4 x时,直线与双曲线不相交( y=3/4 x 代入双曲线方程, 判别式为0)2. 当y=kx+b时,-3/4k3/4时,直线与双曲线的两支有两个交

    35、点3.当y=kx+b 时,k3/4时,y=kx+b代入双曲线方程,判别式为0,直线与双曲线的两支曲线各有一个切点。 判别式 0,直线与双曲线的一支有两个交点。4.当y=kx+b,k=3/4 时,b不等于0,直线与双曲线的一支有一个交点,但并不相切。直线与双曲线只有一个交点,是直线与双曲线相切的必要而非充分条件191622yx回主页回主页用Excel绘制二次曲线n用Excel绘制二次曲线图形直观,有益于熟悉二次曲线标准方程,你想学学吗?回主页回主页回习题回习题二次曲线的切线二次曲线的切线切点(x0,y0)在曲线上圆: (x-a)(x0-a)+(y-b)(y0-b)=r椭圆: xx0/a2+yy0

    36、/b2=1双曲线:xx0/a2-yy0/b2=1抛物线: yy0 =p(x+ x0 )或xx0= p(y+y0)焦点在y轴的曲线的切线依此类推。过已知曲线外一点( x0,y0),与曲线相切的切线方程设切线斜率为k,切线方程为y-y0=k(x-x0)代入二次曲线,成为关于x 的一元二次方程,令判别式=0,求得k,获得切线方程。一般判别式=0能推得直线与曲线相切,反依然,但对双曲线而言,这是充分而不必要条件。已知切线的斜率k,求切线方程椭圆x2/a2+y2/b2=1的切线方程椭圆x2/ b2 +y2/ a2 =1的切线双曲线x2/a2-y2/b2=1的切线双曲线x2/ b2 -y2/ a2 =-1的切线抛物线y2=2px的切线y=kx+p/2k抛物线x2=2pyd 的切线y=kx-k2p/2一般求已知切点的切线方程,把原二次曲线的x2 项用xx0代替, y2项用yy0代替,x项用1/2( x+ x0 ),y用1/2(y+y0)即可。上述内容由汪槛同学提供。222bkakxy222kbakxy222bkakxy222kbakxy回主页回主页回题型一回题型一浏览网上动态曲线浏览网上动态曲线n用引导探索法让学生们观察英国University of St Andrews MT网站的二次曲线,改变a,b 值可观看动态的二次曲线的变化。 网址:http:/138.251.192.92

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:二次曲线复习讲解课件.ppt
    链接地址:https://www.163wenku.com/p-2912956.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库