(5A文)迁移学习算法研究课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《(5A文)迁移学习算法研究课件.ppt》由用户(三亚风情)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 5A文 迁移 学习 算法 研究 课件
- 资源描述:
-
1、【5A5A文文】迁移学习算法研究迁移学习算法研究TrainingDataOccPalm LinesDragonStarFortune?ProflongTgoodLawyershortFbadPhD StubrokenTgoodDoclongFbadClassifierUnseen Data(,long, T)good!What if2022-6-92传统监督机器学习传统监督机器学习(1/2)(1/2)from Prof. Qiang Yang2022-6-93l传统监督学习同源、独立同分布同源、独立同分布两个基两个基本假设本假设标注足够多的训练样本标注足够多的训练样本在实际应用中在实际应用中通
2、常不能满足!通常不能满足!训练集测试集分类器训练集测试集分类器2022-6-94l实际应用学习场景HP 新闻新闻Lenovo 新闻新闻不同源、分布不一致不同源、分布不一致人工标记训练样本,费人工标记训练样本,费时耗力时耗力迁移迁移学习学习 运用已有的知识对运用已有的知识对不同但相关领域不同但相关领域问题问题进行求解的一种新的机器学习方法进行求解的一种新的机器学习方法 放宽了传统机器学习的两个基本假设放宽了传统机器学习的两个基本假设2022-6-95l迁移学习场景无处不在迁移迁移知识知识迁移迁移知识知识图像分类图像分类HP 新闻新闻Lenovo 新闻新闻新闻网页分类新闻网页分类异构特征空间202
3、2-6-96The apple is the pomaceous fruit of the apple tree, species Malus domestica in the rose family Rosaceae .Banana is the common name for a type of fruit and also the herbaceous plants of the genus Musa which produce this commonly eaten fruit .Training: TextFuture: ImagesApplesBananasfrom Prof. Q
4、iang YangXin Jin, Fuzhen Zhuang, Sinno Jialin Pan, Changying Du, Ping Luo, Qing He: Heterogeneous Multi-task Semantic Feature Learning for Classification. CIKM 2015 : 1847-1850. Test Test Training TrainingClassifierClassifier72.65%DVDElectronicsElectronics84.60%ElectronicsDrop!2022-6-97from Prof. Qi
5、ang Yang2022-6-98DVDElectronicsBookKitchenClothesVideo gameFruitHotelTeaImpractical!from Prof. Qiang YangpConcept Learning for Transfer Learning Concept Learning based on Non-negative Matrix Tri-factorization for Transfer Learning Concept Learning based on Probabilistic Latent Semantic Analysis for
6、Transfer LearningpTransfer Learning using Auto-encodersTransfer Learning from Multiple Sources with Autoencoder RegularizationSupervised Representation Learning: Transfer Learning with Deep Auto-encoders2022-6-99Concept Learning based on Non-negative Matrix Tri-factorization for Transfer Learning202
7、2-6-9Concept Learning for Transfer Learning102022-6-9Concept Learning for Transfer Learning11 Many traditional learning techniques work well only under the assumption: Training and test data follow the same distribution Training (labeled)ClassifierTest (unlabeled)From different companiesEnterprise N
8、ews Classification: including the classes“Product Announcement”, “Business scandal”, “Acquisition”, Product announcement: HPs just-released LaserJet Pro P1100 printer and the LaserJet Pro M1130 and M1210 multifunction printers, price performance .Announcement for Lenovo ThinkPad ThinkCentre price $1
9、50 off Lenovo K300 desktop using coupon code . Lenovo ThinkPad ThinkCentre price $200 off Lenovo IdeaPad U450p laptop using. .their performanceHP newsLenovo newsDifferent distributionFail !2022-6-9Concept Learning for Transfer Learning12 Example AnalysisProduct announcement: HPs just-released LaserJ
10、et Pro P1100 printer and the LaserJet Pro M1130 and M1210 multifunction printers, price performance .Announcement for Lenovo ThinkPad ThinkCentre price $150 off Lenovo K300 desktop using coupon code . Lenovo ThinkPad ThinkCentre price $200 off Lenovo IdeaPad U450p laptop using. .their performanceHP
11、newsLenovo newsProductword conceptLaserJet, printer, price, performance ThinkPad, ThinkCentre, price, performance RelatedProductannouncementdocument class:Share some common words: announcement, price, performance indicate2022-6-9Concept Learning for Transfer Learning13 Example Analysis:HPLaserJet, p
12、rinter, price, performance et al.LenovoThinkpad, Thinkcentre, price, performance et al.The words expressing the same word concept are domain-dependent ProductProductannouncementword conceptindicatesThe association between word concepts and document classes is domain-independent 2022-6-9Concept Learn
13、ing for Transfer Learning14 Further observations:Different domains may use same key words to express the same concept (denoted as identical concept)Different domains may also use different key words to express the same concept (denoted as alike concept)Different domains may also have their own disti
14、nct concepts (denoted as distinct concept) The identical and alike concepts are used as the shared concepts for knowledge transfer We try to model these three kinds of concepts simultaneously for transfer learning text classification2022-6-9Concept Learning for Transfer Learning15 Basic formula of m
15、atrix tri-factorization: where the input X is the word-document co-occurrence matrix denotes concept information, may vary in different domainsF denotes the document classification information indeed is the association between word concepts and document classes, may retain stable cross domainsGS2022
16、-6-9Concept Learning for Transfer Learning16lSketch map of MTrickSource domain Xs FsGsFtGtTargetdomain XtSKnowledge TransferlConsidering the alike conceptslOptimization problem for MTrick2022-6-9Concept Learning for Transfer Learning17G0 is the supervision informationthe association S is shared as b
17、ridge to transfer knowledgelDual Transfer Learning (Long et al., SDM 2012), considering identical and alike concepts2022-6-9Concept Learning for Transfer Learning18lFurther divide the word concepts into three kinds:F1, identical concepts; F2, alike concepts; F3, distinct concepts Input: s source dom
18、ain Xr(1rs) with label information, t target domain Xr (s+1rs+t) We propose Triplex Transfer Learning framework based on matrix tri-factorization (TriTL for short)F1, S1 and S2 are shared as the bridge for knowledge transfer across domainsThe supervision information is integrated by Gr (1rs) in sour
19、ce domainsTriTLTriTL (2 (2/5/5) )lOptimization Problem2022-6-9Concept Learning for Transfer Learning19TriTLTriTL (3 (3/5/5) )lWe develop an alternatively iterative algorithm to derive the solution and theoretically analyze its convergence 2022-6-9Concept Learning for Transfer Learning20TriTLTriTL (4
20、 (4/5/5) )lClassification on target domainsWhen 1rs, Gr contains the label information, so we remain it unchanged during the iterations when xi belongs to class j, then Gr(i,j)=1, else Gr(i,j)=0After the iteration, we obtain the output Gr (s+1rs+t), then we can perform classification according to Gr
21、2022-6-9Concept Learning for Transfer Learning21TriTLTriTL (5 (5/5/5) )lAnalysis of Algorithm ConvergenceAccording to the methodology of convergence analysis in the two works Lee et al., NIPS01 and Ding et al., KDD06, the following theorem holds.Theorem (Convergence): After each round of calculating
22、 the iterative formulas, the objective function in the optimization problem will converge monotonically.2022-6-9Concept Learning for Transfer Learning222022-6-9Concept Learning for Transfer Learning23rec.autosrec.motorcyclesrec.baseballrec.hockeysci.cryptsic.electronicssci.medsci.spacecomp.graphicsc
23、omp.sys.ibm.pc.hardwarecomp.sys.mac.hardwarecomp.windows.xtalk.politics.misctalk.politics.gunstalk.politics.mideasttalk.religion.miscrecscicomptalkData Preparation (1Data Preparation (1/3/3) )l20NewsgroupsFour top categories, each top category contains four sub-categorieslSentiment Classification, f
24、our domains: books, dvd, electronics, kitchen Randomly select two domains as sources, and the rest as targets, then 6 problems can be constructed2022-6-9Concept Learning for Transfer Learning24rec.autosrec.motorcyclesrec.baseballrec.hockeysci.cryptsic.electronicssci.medsci.spacerec +sci -baseball cr
25、ypy Source domainautos spaceT a r g e t domainlFor the classification problem with one source domain and one target domain, we can construct 144 ( ) problems2244PPData Preparation (2Data Preparation (2/3/3) )lConstruct classification tasks (Traditional TL)2022-6-9Concept Learning for Transfer Learni
展开阅读全文