标准化的典则判别函数系数课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《标准化的典则判别函数系数课件.ppt》由用户(三亚风情)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 标准化 判别函数 系数 课件
- 资源描述:
-
1、第14章 聚类分析与判别分析介绍:介绍: 1、聚类分析、聚类分析 2、判别分析、判别分析 分类学是人类认识世界的基础科学。聚类分析分类学是人类认识世界的基础科学。聚类分析和判别分析是研究事物分类的基本方法,广泛地应和判别分析是研究事物分类的基本方法,广泛地应用于自然科学、社会科学、工农业生产的各个领域。用于自然科学、社会科学、工农业生产的各个领域。14.1.1 聚类分析根据事物本身的特性研究个体分类的方法,原根据事物本身的特性研究个体分类的方法,原则是同一类中的个体有较大的相似性,不同类则是同一类中的个体有较大的相似性,不同类中的个体差异很大。中的个体差异很大。根据分类对象的不同,分为样品(观
2、测量)聚根据分类对象的不同,分为样品(观测量)聚类和变量聚类两种:类和变量聚类两种:n样品聚类:对观测量样品聚类:对观测量(Case)进行聚类(不同的目的进行聚类(不同的目的选用不同的指标作为分类的依据,如选拔运动员与选用不同的指标作为分类的依据,如选拔运动员与分课外活动小组)分课外活动小组)n变量聚类:找出彼此独立且有代表性的自变量,而变量聚类:找出彼此独立且有代表性的自变量,而又不丢失大部分信息。在生产活动中不乏有变量聚又不丢失大部分信息。在生产活动中不乏有变量聚类的实例,如:衣服号码(身长、胸围、裤长、腰类的实例,如:衣服号码(身长、胸围、裤长、腰围)、鞋的号码。变量聚类使批量生产成为可
3、能。围)、鞋的号码。变量聚类使批量生产成为可能。14.1.2 判别分析判别分析是根据表明事物特点的变量值和它们判别分析是根据表明事物特点的变量值和它们所属的类,求出判别函数。根据判别函数对未所属的类,求出判别函数。根据判别函数对未知所属类别的事物进行分类的一种分析方法。知所属类别的事物进行分类的一种分析方法。在自然科学和社会科学的各个领域经常遇到需在自然科学和社会科学的各个领域经常遇到需要对某个个体属于哪一类进行判断。如动物学要对某个个体属于哪一类进行判断。如动物学家对动物如何分类的研究和某个动物属于哪一家对动物如何分类的研究和某个动物属于哪一类、目、纲的判断。类、目、纲的判断。不同:判别分析
4、和聚类分析不同的在于判别分不同:判别分析和聚类分析不同的在于判别分析要求已知一系列反映事物特征的数值变量的析要求已知一系列反映事物特征的数值变量的值,并且已知各个体的分类(值,并且已知各个体的分类(训练样本训练样本)。)。14.1.3 聚类分析与判别分析的SPSS过程在在AnalyzeClassify下:下:1.K-Means Cluster: 观测量快速聚类分观测量快速聚类分析过程析过程2.Hierarchical Cluster:分层聚类(进行分层聚类(进行观测量聚类和变量聚类的过程观测量聚类和变量聚类的过程3.Discriminant:进行判别分析的过程:进行判别分析的过程14.2 快速
5、样本聚类过程(Quick Cluster)使用使用 k 均值分类法对观测量进行聚类均值分类法对观测量进行聚类可使用系统的默认选项或自己设置选项,如分为几类、可使用系统的默认选项或自己设置选项,如分为几类、指定初始类中心、是否将聚类结果或中间数据数据存指定初始类中心、是否将聚类结果或中间数据数据存入数据文件等。入数据文件等。快速聚类实例快速聚类实例(P342,data14-01a):使用系统的默认使用系统的默认值进行:对运动员的分类(分为值进行:对运动员的分类(分为4类)类)nAnalyzeClassifyK-Means ClusterwVariables: x1,x2,x3wLabel Cas
6、e By: nowNumber of Cluster: 4w比较有用的结果:聚类结果形成的最后四类中心点比较有用的结果:聚类结果形成的最后四类中心点(Final Cluster Centers) 和每类的观测量数目(和每类的观测量数目(Number of Cases in each Cluster)w但不知每个运动员究竟属于哪一类?这就要用到但不知每个运动员究竟属于哪一类?这就要用到Save选项选项14.2 快速样本聚类过程(Quick Cluster)中的选项使用快速聚类的选择项:使用快速聚类的选择项:w类中心数据的输入与输出:类中心数据的输入与输出:Centers选项选项w输出数据选择项:
7、输出数据选择项:Save选项选项w聚类方法选择项:聚类方法选择项:Method选项选项w聚类何时停止聚类何时停止选择项:选择项:Iterate选项选项w输出统计量选择项:输出统计量选择项:Option选项选项14.2 指定初始类中心的聚类方法例题P343数据同上(数据同上(data14-01a):以四个四类成绩突出者的数据为初始):以四个四类成绩突出者的数据为初始聚类中心聚类中心(种子种子)进行聚类。类中心数据文件进行聚类。类中心数据文件data14-01b(但缺一(但缺一列列Cluster_,不能直接使用,要修改),不能直接使用,要修改)。对运动员的分类(还是分。对运动员的分类(还是分为为4
8、类)类)AnalyzeClassifyK-Means ClusternVariables: x1,x2,x3nLabel Case By: nonNumber of Cluster: 4nCenter: Read initial from: data14-01bnSave: Cluster membership和和Distance from Cluster Centern比较有用的结果(可将结果与前面没有初始类中心比较):比较有用的结果(可将结果与前面没有初始类中心比较):w聚类结果形成的最后四类中心点聚类结果形成的最后四类中心点(Final Cluster Centers) w每类的观测量数
9、目(每类的观测量数目(Number of Cases in each Cluster)w在数据文件中的两个新变量在数据文件中的两个新变量qc1_1(每个观测量最终被分配(每个观测量最终被分配到哪一类)和到哪一类)和 qc1_2(观测量与所属(观测量与所属类中心点的距离)类中心点的距离)14.3 分层聚类(Hierarchical Cluster)分层聚类方法:分层聚类方法:n分解法分解法:先视为一大类,再分成几类先视为一大类,再分成几类n凝聚法凝聚法:先视每个为一类先视每个为一类,再合并为几大类再合并为几大类可用于观测量可用于观测量(样本样本)聚类聚类(Q型型)和变量聚类和变量聚类(R型型)一
10、般分为两步(自动一般分为两步(自动,可从可从Paste的语句知道的语句知道,P359):):nProximities:先对数据进行的预处理:先对数据进行的预处理(标准化和计算距离等标准化和计算距离等)nCluster:然后进行聚类分析:然后进行聚类分析两种统计图:树形图两种统计图:树形图(Dendrogram)和冰柱图和冰柱图(Icicle)各类型数据的标准化、距离和相似性计算各类型数据的标准化、距离和相似性计算P348-354n定距变量、分类变量、二值变量定距变量、分类变量、二值变量n标准化方法标准化方法p353:Z Scores、Range -1 to 1、 Range 0 to 1等等1
11、4.3.4 用分层聚类法进行观测量聚类实例P358对对20种啤酒进行分类种啤酒进行分类(data14-02),变量包括变量包括:Beername(啤酒名称啤酒名称)、calorie(热量热量)、sodium(钠含量钠含量)、alcohol(酒精含量酒精含量)、 cost(价格价格)AnalyzeClassify Hierarchical Cluster:nVariables: calorie,sodium,alcohol, cost 成分和价格成分和价格nLabel Case By: BeernamenCluster:Case, Q聚类聚类 nDisplay: 选中选中Statistics,单
12、击,单击StatisticswAgglomeration Schedule Agglomeration Schedule 凝聚状态表凝聚状态表wProximity matrixProximity matrix:距离矩阵:距离矩阵wCluster membershipCluster membership:Single solutionSingle solution:4 4 显示分为显示分为4 4类时,各观测类时,各观测量所属的类量所属的类nMethod: Cluster (Furthest Neighbor), Measure-Interval (Squared Euclidean distan
13、ce), Transform Value (Range 0-1/By variable (值值-最小值最小值)/极差极差)nPlots: (Dendrogram) Icicle(Specified range of cluster, Start-1,Stop-4, by-1), Orientation (Vertical纵向作图纵向作图)nSave: Cluster Membership(Single solution 4)n比较有用的结果:根据需要进行分类,在数据文件中的分类新变量比较有用的结果:根据需要进行分类,在数据文件中的分类新变量clu4_1等等14.3.5 用分层聚类法进行变量聚类
14、变量聚类,是一种降维的方法,用于在变量聚类,是一种降维的方法,用于在变量众多时寻找有代表性的变量,以便变量众多时寻找有代表性的变量,以便在用少量、有代表性的变量代替大变量在用少量、有代表性的变量代替大变量集时,损失信息很少。集时,损失信息很少。与进行观测量聚类雷同,不同点在于:与进行观测量聚类雷同,不同点在于:w选择选择Variable而非而非CasewSave选项失效,不建立的新变量选项失效,不建立的新变量14.3.6 变量聚类实例1 P366上面啤酒分类问题上面啤酒分类问题data14-02。AnalyzeClassify Hierarchical Cluster:nVariables:
15、calorie,sodium,alcohol, cost 成分和价格成分和价格nCluster:Variable, R聚类聚类 nMethod:wCluster Method :Furthest NeighborwMeasure-Interval:Pearson CorrelationwTransform Values:Z Score (By Variable)nPlots: Dendrogram 树型图树型图nStatistics:Proximity matrixProximity matrix:相关矩阵:相关矩阵n比较有用的结果:根据相关矩阵和树型图,可知比较有用的结果:根据相关矩阵和树型
16、图,可知calorie(热量热量)和和alcohol(酒酒精含量精含量)的相关系数最大,首先聚为一类。从整体上看,聚为三类是比较好的的相关系数最大,首先聚为一类。从整体上看,聚为三类是比较好的结果。至于热量和酒精含量选择哪个作为典型指标代替原来的两个变量,可结果。至于热量和酒精含量选择哪个作为典型指标代替原来的两个变量,可以根据专业知识或测度的难易程度决定。以根据专业知识或测度的难易程度决定。14.3.6 变量聚类实例2 P368有有10个测试项目,分别用变量个测试项目,分别用变量X1-X10表示,表示,50名学生参加测试。想从名学生参加测试。想从10个变量中选择几个变量中选择几个典型指标。个
17、典型指标。data14-03AnalyzeClassify Hierarchical Cluster:nVariables: X1-X10nCluster:Variable, R聚类聚类 nMethod:wCluster Method :Furthest NeighborwMeasure-Interval:Pearson CorrelationnPlots: Dendrogram 树型图树型图nStatistics:Proximity matrixProximity matrix相关矩阵相关矩阵n比较有用的结果:可以从树型图中看出聚类过程。具体聚为几类最为合理,比较有用的结果:可以从树型图中看
18、出聚类过程。具体聚为几类最为合理,根据专业知识来定。而每类中的典型指标的选择,可用根据专业知识来定。而每类中的典型指标的选择,可用p370的相关指数公的相关指数公式的计算,然后比较类中各个变量间的相关指数,哪个大,就选哪个变量作式的计算,然后比较类中各个变量间的相关指数,哪个大,就选哪个变量作为此类的代表变量。为此类的代表变量。14.4 判别分析P374判别分析的概念:是根据观测到的若干变量值,判断判别分析的概念:是根据观测到的若干变量值,判断研究对象如何分类的方法。研究对象如何分类的方法。要先建立判别函数要先建立判别函数 Y=a1x1+a2x2+.anxn,其中,其中:Y为为判别分数判别分数
19、(判别值判别值),x1 x2.xn为反映研究对象特征的变为反映研究对象特征的变量,量,a1 a2.an为系数为系数SPSS对于分为对于分为m类的研究对象,建立类的研究对象,建立m个线性判别函个线性判别函数。对于每个个体进行判别时,把观测量的各变量值数。对于每个个体进行判别时,把观测量的各变量值代入判别函数,得出判别分数,从而确定该个体属于代入判别函数,得出判别分数,从而确定该个体属于哪一类,或计算属于各类的概率,从而判别该个体属哪一类,或计算属于各类的概率,从而判别该个体属于哪一类。还建立标准化和未标准化的典则判别函数。于哪一类。还建立标准化和未标准化的典则判别函数。具体见下面具体见下面吴喜之
20、教授有关判别分析判别分析的讲义补充:补充:聚类分析与判别分析以下的讲义是吴喜之教授有关聚类分析与判别分析聚类分析与判别分析的讲义,我觉得比书上讲得清楚。先是聚类分析一章先是聚类分析一章再是判别分析一章再是判别分析一章聚类分析聚类分析分类分类俗语说,物以类聚、人以群分。俗语说,物以类聚、人以群分。但什么是分类的根据呢?但什么是分类的根据呢?比如,要想把中国的县分成若干类,就有很比如,要想把中国的县分成若干类,就有很多种分类法;多种分类法;可以按照自然条件来分,可以按照自然条件来分,比如考虑降水、土地、日照、湿度等各方面;比如考虑降水、土地、日照、湿度等各方面;也可以考虑收入、教育水准、医疗条件、
21、基也可以考虑收入、教育水准、医疗条件、基础设施等指标;础设施等指标;既可以用某一项来分类,也可以同时考虑多既可以用某一项来分类,也可以同时考虑多项指标来分类。项指标来分类。 聚类分析聚类分析对于一个数据,人们既可以对变量(指标)进对于一个数据,人们既可以对变量(指标)进行分类行分类(相当于对数据中的列分类相当于对数据中的列分类),也可以对,也可以对观测值(事件,样品)来分类(相当于对数据观测值(事件,样品)来分类(相当于对数据中的行分类)。中的行分类)。比如学生成绩数据就可以对学生按照理科或文比如学生成绩数据就可以对学生按照理科或文科成绩(或者综合考虑各科成绩)分类,科成绩(或者综合考虑各科成
22、绩)分类,当然,并不一定事先假定有多少类,完全可以当然,并不一定事先假定有多少类,完全可以按照数据本身的规律来分类。按照数据本身的规律来分类。本 章 要 介 绍 的 分 类 的 方 法 称 为 聚 类 分 析本 章 要 介 绍 的 分 类 的 方 法 称 为 聚 类 分 析(cluster analysis)。对变量的聚类称为)。对变量的聚类称为R型聚类,而对观测值聚类称为型聚类,而对观测值聚类称为Q型聚类。这两型聚类。这两种聚类在数学上是对称的,没有什么不同。种聚类在数学上是对称的,没有什么不同。 饮料数据(饮料数据(drink.sav )16种饮料的热量、咖啡因、钠及价格四种变量 如何度量
23、远近如何度量远近?如果想要对100个学生进行分类,如果仅仅知道他们的数学成绩,则只好按照数学成绩来分类;这些成绩在直线上形成100个点。这样就可以把接近的点放到一类。如果还知道他们的物理成绩,这样数学和物理成绩就形成二维平面上的100个点,也可以按照距离远近来分类。三维或者更高维的情况也是类似;只不过三维以上的图形无法直观地画出来而已。在饮料数据中,每种饮料都有四个变量值。这就是四维空间点的问题了。 两个距离概念两个距离概念按照远近程度来聚类需要明确两个概念:一个是按照远近程度来聚类需要明确两个概念:一个是点和点点和点之间之间的距离,一个是的距离,一个是类和类之间类和类之间的距离。的距离。点间
24、距离有很多定义方式。最简单的是歐氏距离,还有点间距离有很多定义方式。最简单的是歐氏距离,还有其他的距离。其他的距离。当然还有一些和距离相反但起同样作用的概念,比如相当然还有一些和距离相反但起同样作用的概念,比如相似性等,两点越相似度越大,就相当于距离越短。似性等,两点越相似度越大,就相当于距离越短。由一个点组成的类是最基本的类;如果每一类都由一个由一个点组成的类是最基本的类;如果每一类都由一个点组成,那么点间的距离就是类间距离。但是如果某一点组成,那么点间的距离就是类间距离。但是如果某一类包含不止一个点,那么就要确定类间距离,类包含不止一个点,那么就要确定类间距离,类间距离是基于点间距离定义的
25、:比如类间距离是基于点间距离定义的:比如两类之间最近点两类之间最近点之间的距离之间的距离可以作为这两类之间的距离,也可以用可以作为这两类之间的距离,也可以用两类两类中最远点之间的距离中最远点之间的距离作为这两类之间的距离;当然也可作为这两类之间的距离;当然也可以用各类的中心之间的距离来作为类间距离。在计算时,以用各类的中心之间的距离来作为类间距离。在计算时,各种点间距离和类间距离的选择是通过统计软件的选项各种点间距离和类间距离的选择是通过统计软件的选项实现的。不同的选择的结果会不同,但一般不会差太多。实现的。不同的选择的结果会不同,但一般不会差太多。 向量向量x=(x1, xp)与与y=(y1
展开阅读全文