《机械工程控制基础》(杨叔子主编)PPT第四章+系统的频率特性分析教材课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《《机械工程控制基础》(杨叔子主编)PPT第四章+系统的频率特性分析教材课件.ppt》由用户(三亚风情)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 机械工程控制基础 机械工程 控制 基础 杨叔子 主编 PPT 第四 系统 频率特性 分析 教材 课件
- 资源描述:
-
1、1第四章第四章 系统的频率特性分析系统的频率特性分析 频率特性概述频率特性概述 频率特性的图示方法频率特性的图示方法 频率特性的特征量频率特性的特征量 最小相位系统与非最小相位系统最小相位系统与非最小相位系统 通过谐波,识别系统的传递函数通过谐波,识别系统的传递函数 利用利用MATLABMATLAB分析频率特性分析频率特性习题:习题:4.6、 4.7(2)、4.9、4.12(3)(4)、4.13、4.15(7)(8)、4.192频率特性分析是经典控制理论中研究与分析系统特性的主要方法。频率特性分析是经典控制理论中研究与分析系统特性的主要方法。4.1 频率特性概述频率特性概述 因此,从某种意义上
2、讲,频率特性法与时域分析法有着本因此,从某种意义上讲,频率特性法与时域分析法有着本质的不同。质的不同。 频率特性虽然是系统对正弦信号的稳态响应,但它频率特性虽然是系统对正弦信号的稳态响应,但它不仅不仅能能反映系统的稳态性能,而且可以用来研究系统的反映系统的稳态性能,而且可以用来研究系统的稳定性和动态稳定性和动态性能性能。34.1 频率特性概述频率特性概述(部分分式处理部分分式处理)线性定常系统对谐波输入的稳态响应称为线性定常系统对谐波输入的稳态响应称为频率响应频率响应。 一、频率响应与频率特性一、频率响应与频率特性 1、频率响应、频率响应 44.1 频率特性概述频率特性概述54.1 频率特性概
3、述频率特性概述根据频率响应的概念,可以定义系统的根据频率响应的概念,可以定义系统的幅频特性幅频特性和和相频特性相频特性。根据频率特性和频率响应的概念,还可以求出系统的谐波输入根据频率特性和频率响应的概念,还可以求出系统的谐波输入 作用下的稳态响应为作用下的稳态响应为2.6例例4-24-2求原函数求原函数f f( (t t) )解:解: 对分母的对分母的s s多项式进行因子分解多项式进行因子分解2328)(2ssssFs s2 2+3+3s s+2=(+2=(s s+1)(+1)(s s+2)+2)21)2)(1(28)(21 sKsKssssF两边同乘以两边同乘以( (s s+1)+1)得得2
4、)1(228)()1(21 ssKKsssFs令令s s = -1= -1,则,则11|)()1(ssFsK4.1 4.1 频率特性概述频率特性概述(部分分式处理部分分式处理)二、二、7621281 K同理:同理:14128| )()2(222sssssFsK21416)( sssFf(t)=L-1F(s)=(-6e-t+14e-2t)4.1 频率特性概述频率特性概述11| )() 1(ssFsK由由得:得:84.1 频率特性概述频率特性概述二、二、94.1 频率特性概述频率特性概述二、二、104.1 频率特性概述频率特性概述二、二、114.1 频率特性概述频率特性概述 三、三、根据定义来求,
5、此方法麻烦。根据定义来求,此方法麻烦。124.1 频率特性概述频率特性概述 这是对实际系统求取频率特性的一种常用而又重要的方法。这是对实际系统求取频率特性的一种常用而又重要的方法。因为,如果因为,如果不知道不知道系统的系统的传递函数或微分方程传递函数或微分方程等数学模型就无法等数学模型就无法用上面两种方法求取频率特性。在这样的情况下,只有通过实验用上面两种方法求取频率特性。在这样的情况下,只有通过实验求得频率特性后才能求出传递函数。这正是频率特性的一个求得频率特性后才能求出传递函数。这正是频率特性的一个极为极为重要的作用重要的作用。 三、三、13根据定义来求,此方法麻烦。根据定义来求,此方法麻
6、烦。4.1 频率特性概述频率特性概述 三、三、144.1 频率特性概述频率特性概述四、四、15这表明系统的频率特性就是单位这表明系统的频率特性就是单位脉冲响应函数脉冲响应函数w(t)的)的Fourer变变换,即换,即w(t)的频谱。所以,对)的频谱。所以,对频率特性的分析就是对单位脉冲频率特性的分析就是对单位脉冲响应函数的频谱分析。响应函数的频谱分析。4.1 频率特性概述频率特性概述五、五、(2)频率特性实质上是系统的单位脉冲)频率特性实质上是系统的单位脉冲响应函数的响应函数的Fourier变换。变换。16 频率特性的计算量很小,一般都是采用近似的作图方法,简频率特性的计算量很小,一般都是采用
7、近似的作图方法,简单,直观,易于在工程技术界使用。单,直观,易于在工程技术界使用。 可以采用实验的方法,求出系统或元件的频率特性,这对于机可以采用实验的方法,求出系统或元件的频率特性,这对于机理复杂或机理不明而难以列写微分方程的系统或元件,具有重要理复杂或机理不明而难以列写微分方程的系统或元件,具有重要的实用价值,正因为这些优点,频率特性法在工程技术领域得到的实用价值,正因为这些优点,频率特性法在工程技术领域得到广泛的应用。广泛的应用。4.1 频率特性概述频率特性概述174.3 L-R-C串联电路如图所示。假设作用在输入端的电压串联电路如图所示。假设作用在输入端的电压为为 。试求通过电阻。试求
8、通过电阻R的稳态电流的稳态电流i (t) 。系统的系统的传递函数传递函数为:为: 系统的系统的频率特性频率特性为为 : 系统的系统的幅频特性幅频特性为:为:4.1 频率特性概述频率特性概述解:解:根据回路电压定律有根据回路电压定律有 六、举例六、举例18系统的系统的相频特性相频特性为:为:根据系统根据系统频率特性的定义频率特性的定义有有 ,系统稳态输出系统稳态输出为:为:4.1 频率特性概述频率特性概述19例例4.4 系统结构图如图所示。当系统的输入系统结构图如图所示。当系统的输入 时,测得系时,测得系统的输出统的输出 ,试确定该系统的参数,试确定该系统的参数n,。 系统的系统的频率特性频率特
9、性为为 其中,其中,幅频特性幅频特性为为: 相频特性相频特性为为:由已知条件知,当由已知条件知,当=1时,时,4.1 频率特性概述频率特性概述解:系统的闭环传递函数为解:系统的闭环传递函数为:204.1 频率特性概述频率特性概述21七、机械系统的频率特性七、机械系统的频率特性(动柔度、动刚度、静刚度动柔度、动刚度、静刚度) 若机械系统的输入为力,输出为位移(变形),则机械系统若机械系统的输入为力,输出为位移(变形),则机械系统的频率特性就是机械系统的的频率特性就是机械系统的动柔度动柔度。 机械系统的频率特性的倒数称之为机械系统的机械系统的频率特性的倒数称之为机械系统的动刚度动刚度。 当当w0时
10、,系统频率特性的倒数为系统的时,系统频率特性的倒数为系统的静刚度静刚度。例例4-5:已知机械系统在输入力作用下变形的传递函数为已知机械系统在输入力作用下变形的传递函数为2/(s+1) (mm/kg),求系统的动刚度、动柔度和精刚度。求系统的动刚度、动柔度和精刚度。解:解:根据动刚度和动柔度的定义有:根据动刚度和动柔度的定义有:4.1 频率特性概述频率特性概述224.2 频率特性的图示方法频率特性的图示方法 频率特性频率特性G(jw)以及以及幅频特性幅频特性和和相频特性相频特性都是频率都是频率w的函数,因而可以用的函数,因而可以用曲线表示它们随频率变换的关系曲线表示它们随频率变换的关系。 用曲线
11、图形表示系统的频率特性,具有用曲线图形表示系统的频率特性,具有直观方便直观方便的的优点,在优点,在系统分析和研究系统分析和研究中很有用处。中很有用处。 常用的频率特性的常用的频率特性的图示方法图示方法:极坐标图极坐标图和和对数坐标图对数坐标图一、频率特性的极坐标图一、频率特性的极坐标图频率特性的极坐标图又称频率特性的极坐标图又称Nyquist图,也称图,也称幅相频率特性图幅相频率特性图。234.2 频率特性的图示方法频率特性的图示方法在复平面在复平面G(j)上表示上表示 G(j )的幅值的幅值| G(j)|和相角和相角G (j)随随频率频率的改变而变化的关系图的改变而变化的关系图,这种图形称为
12、频率特性的,这种图形称为频率特性的极坐标图,极坐标图,又称为又称为nyquist图。图。244.2 频率特性的图示方法频率特性的图示方法(典型环节的典型环节的Nyquist图图)所以,比例环节频率特性的所以,比例环节频率特性的nyquistnyquist图是:图是:254.2 频率特性的图示方法频率特性的图示方法(典型环节的典型环节的Nyquist图图)所以,积分环节频率特性的所以,积分环节频率特性的nyquistnyquist图是:图是:264.2 频率特性的图示方法频率特性的图示方法(典型环节的典型环节的Nyquist图图)所以,微分环节频率特性的所以,微分环节频率特性的nyquistny
13、quist图是:图是:274.2 频率特性的图示方法频率特性的图示方法(典型环节的典型环节的Nyquist图图)所以,惯性环节频率特性的所以,惯性环节频率特性的nyquistnyquist图是:图是:284.2 频率特性的图示方法频率特性的图示方法(典型环节的典型环节的Nyquist图图)所以,微分环节频率特性的所以,微分环节频率特性的nyquistnyquist图是:图是:294.2 频率特性的图示方法频率特性的图示方法(典型环节的典型环节的Nyquist图图)304.2 频率特性的图示方法频率特性的图示方法(典型环节的典型环节的Nyquist图图)314.2 频率特性的图示方法频率特性的图
14、示方法(典型环节的典型环节的Nyquist图图)324.2 频率特性的图示方法频率特性的图示方法(典型环节的典型环节的Nyquist图图)334.2 频率特性的图示方法频率特性的图示方法(典型环节的典型环节的Nyquist图图)所以,延时环节频率特性的所以,延时环节频率特性的nyquistnyquist图是:图是:344.2 频率特性的图示方法频率特性的图示方法(典型环节的典型环节的Nyquist图图)354.2 频率特性的图示方法频率特性的图示方法(典型环节的典型环节的Nyquist图图 举例举例)例例1试绘制其频率特性的试绘制其频率特性的Nyquist图。图。36例例2 已知某超前网络的传
15、递函数为已知某超前网络的传递函数为 试绘制其频率特性试绘制其频率特性的的Nyquist图。图。法一法一:解:解:该网络的频率特性为该网络的频率特性为其中,其中,幅频特性为:幅频特性为:相频特性为相频特性为:实频特性为实频特性为:虚频特性为虚频特性为:u、v满足关系:满足关系:又因为又因为u0、v0,系统频率特性的,系统频率特性的Nyquist曲线为一个位于第一象限曲线为一个位于第一象限半圆。系统频率特性的半圆。系统频率特性的Nyquist图如图所示。图如图所示。4.2 频率特性的图示方法频率特性的图示方法(典型环节的典型环节的Nyquist图图举例举例)37法二:法二:因此,可以先作出因此,可
16、以先作出 的的Nyquist图,然后取其反对称曲线,图,然后取其反对称曲线,即为即为 的的Nyquist图,最后将图,最后将 的的Nyquist图图沿实轴右移沿实轴右移1个单位,即得个单位,即得 的的Nyquist图如图图如图所示。所示。 4.2 频率特性的图示方法频率特性的图示方法(典型环节的典型环节的Nyquist图图举例举例)由于:由于:384.2 频率特性的图示方法频率特性的图示方法(典型环节的典型环节的Nyquist图图举例举例)例例3394.2 频率特性的图示方法频率特性的图示方法(典型环节的典型环节的Nyquist图图举例举例)已知三个不同系统已知三个不同系统404.2 频率特性
17、的图示方法频率特性的图示方法(典型环节的典型环节的Nyquist图图举例举例)系统的频率特性:系统的频率特性:系统的系统的nyquistnyquist图的一般形状:图的一般形状:若nm,则若nm,则|G(jw)|=const414.2 频率特性的图示方法频率特性的图示方法(典型环节的典型环节的Bode图图)dec(10倍频程倍频程)424.2 频率特性的图示方法频率特性的图示方法(典型环节的典型环节的Bode图图)434.2 频率特性的图示方法频率特性的图示方法(典型环节的典型环节的Bode图图)444.2 频率特性的图示方法频率特性的图示方法(典型环节的典型环节的Bode图图)454.2 频
18、率特性的图示方法频率特性的图示方法(典型环节的典型环节的Bode图图)464.2 频率特性的图示方法频率特性的图示方法(典型环节的典型环节的Bode图图)474.2 频率特性的图示方法频率特性的图示方法(典型环节的典型环节的Bode图图)484.2 频率特性的图示方法频率特性的图示方法(典型环节的典型环节的Bode图图)494.2 频率特性的图示方法频率特性的图示方法(典型环节的典型环节的Bode图图)504.2 频率特性的图示方法频率特性的图示方法(典型环节的典型环节的Bode图图)514.2 频率特性的图示方法频率特性的图示方法(典型环节的典型环节的Bode图图)524.2 频率特性的图示
19、方法频率特性的图示方法(典型环节的典型环节的Bode图图)534.2 频率特性的图示方法频率特性的图示方法(典型环节的典型环节的Bode图图)544.2 频率特性的图示方法频率特性的图示方法(典型环节的典型环节的Bode图图)关于典型环节的对数关于典型环节的对数幅频特性幅频特性及其渐进线和对数及其渐进线和对数相频特性相频特性的特的特点归纳如下:点归纳如下:554.2 频率特性的图示方法频率特性的图示方法(典型环节的典型环节的Bode图图)绘制系统的绘制系统的bodebode图的步骤:图的步骤:564.2 频率特性的图示方法频率特性的图示方法(典型环节的典型环节的Bode图图)574.2 频率特
20、性的图示方法频率特性的图示方法(典型环节的典型环节的Bode图图)系统系统bode图的图的几个特点几个特点系统的频率特性:系统的频率特性:584.2 频率特性的图示方法频率特性的图示方法(典型环节的典型环节的Bode图图)(解题步骤)(解题步骤)594.2 频率特性的图示方法频率特性的图示方法(典型环节的典型环节的Bode图图)60例例4.6 试绘制传递函数试绘制传递函数 的对数幅频特性的对数幅频特性曲线。曲线。解:将传递函数进行解:将传递函数进行标准化标准化得得其频率特性为其频率特性为因此,它由一个比例环节(比例系数因此,它由一个比例环节(比例系数K=7.5)、一个一阶导前环节)、一个一阶导
21、前环节(时间常数(时间常数 即转折频率为即转折频率为 )、一个积分环)、一个积分环节、一个一阶惯性环节(时间常数节、一个一阶惯性环节(时间常数 ,即转折频率,即转折频率为为 )和一个二阶振荡环节()和一个二阶振荡环节( )等五个典型环节组成。等五个典型环节组成。 法一:先分别作出五个典型环节的对数幅频特性的渐近线,然后,法一:先分别作出五个典型环节的对数幅频特性的渐近线,然后,叠加叠加,即得系统的对数幅频特性曲线如图(例,即得系统的对数幅频特性曲线如图(例4.4)所示。)所示。 4.2 频率特性的图示方法频率特性的图示方法(典型环节的典型环节的Bode图图)61法二:法二:(1)分别在横坐标轴
展开阅读全文