VAR模型分析(ppt-81页)课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《VAR模型分析(ppt-81页)课件.ppt》由用户(三亚风情)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- VAR 模型 分析 ppt 81 课件
- 资源描述:
-
1、1一、一、VAR模型及特点模型及特点二、二、VAR模型滞后阶数模型滞后阶数p的确定方法的确定方法三、格兰杰因果关系检验三、格兰杰因果关系检验四、脉冲响应函数与方差分解四、脉冲响应函数与方差分解五、五、Jonhanson协整检验协整检验 六、建立六、建立VAR模型模型七、利用七、利用VAR模型进行预测模型进行预测八、向量误差修正模型八、向量误差修正模型VAR 模型分析模型分析21. VAR模型模型向量自回归模型向量自回归模型 经典计量经济学中,由线性方程构成的联立方程经典计量经济学中,由线性方程构成的联立方程组模型,由科普曼斯(组模型,由科普曼斯(poOKmans1950)和霍德科普曼和霍德科普
2、曼斯(斯(Hood-poOKmans1953)提出。联立方程组模型在提出。联立方程组模型在20世纪五、六十年代曾轰动一时,其优点主要在于对每个方世纪五、六十年代曾轰动一时,其优点主要在于对每个方程的残差和解释变量的有关问题给予了充分考虑,提出了程的残差和解释变量的有关问题给予了充分考虑,提出了工具变量法、两阶段最小二乘法、三阶段最小二乘法、有工具变量法、两阶段最小二乘法、三阶段最小二乘法、有限信息极大似然法和完全信息极大似然法等参数的估计方限信息极大似然法和完全信息极大似然法等参数的估计方法。这种建模方法用于研究复杂的宏观经济问题,有时多法。这种建模方法用于研究复杂的宏观经济问题,有时多达万余
3、个内生变量。当时主要用于预测和达万余个内生变量。当时主要用于预测和一、一、VARVAR模型及特点模型及特点3政策分析。但实际中,这种模型的效果并不令人满政策分析。但实际中,这种模型的效果并不令人满意。意。 联立方程组模型的主要问题:联立方程组模型的主要问题: (1)这种模型是在经济理论指导下建立起来的结构模型)这种模型是在经济理论指导下建立起来的结构模型。遗憾的是经济理论并未明确的给出变量之间的动态关系。遗憾的是经济理论并未明确的给出变量之间的动态关系。 (2)内生、外生变量的划分问题较为复杂;)内生、外生变量的划分问题较为复杂; (3)模型的识别问题,当模型不可识别时)模型的识别问题,当模型
4、不可识别时,为达到可识别为达到可识别的目的,常要将不同的工具变量加到各方程中,通常这种的目的,常要将不同的工具变量加到各方程中,通常这种工具变量的解释能力很弱;工具变量的解释能力很弱; (4)若变量是非平稳的(通常如此),则会违反假设,)若变量是非平稳的(通常如此),则会违反假设,带来更严重的伪回归问题。带来更严重的伪回归问题。4 由此可知,经济理论指导下建立的结构性经典计量模由此可知,经济理论指导下建立的结构性经典计量模型存在不少问题。为解决这些问题而提出了一种用非结构型存在不少问题。为解决这些问题而提出了一种用非结构性方法建立各变量之间关系的模型。本章所要介绍的性方法建立各变量之间关系的模
5、型。本章所要介绍的VARVAR模模型和型和VECVEC模型,就是非结构性的方程组模型。模型,就是非结构性的方程组模型。 VAR (Vector Autoregression) VAR (Vector Autoregression)模型由西姆斯模型由西姆斯(C.A.Sims,1980C.A.Sims,1980)提出提出, ,他推动了对经济系统动态分析的他推动了对经济系统动态分析的广泛应用,是当今世界上的主流模型之一。受到普遍重视,广泛应用,是当今世界上的主流模型之一。受到普遍重视,得到广泛应用。得到广泛应用。 VAR VAR模型主要用于预测和分析随机扰动对系统的动态冲模型主要用于预测和分析随机扰
6、动对系统的动态冲击,冲击的大小、正负及持续的时间。击,冲击的大小、正负及持续的时间。 VAR VAR模型的定义式为:设模型的定义式为:设 是是N N1 1阶时序阶时序应变量列向量,则应变量列向量,则p p阶阶VARVAR模型(记为模型(记为VAR(p)VAR(p)):):12( )TtttNtYy yyp11221ti t itttp t ptiYYUYYYU(1)5式中,式中, 是第是第i i个待估参数个待估参数N NN N阶矩阵阶矩阵; ; 是是N N1 1阶随机误差列向量阶随机误差列向量; ; 是是N NN N阶方差协方差矩阵;阶方差协方差矩阵; p p 为模型最大滞后阶数。为模型最大滞
7、后阶数。 由式(由式(11.111.1)知,)知,VAR(p)VAR(p)模型,是以模型,是以N N个第个第t t期变量期变量 为应变量,以为应变量,以N N个应变量个应变量的最大的最大p p阶滞后变量为解释变量的方程组模型,方程组模阶滞后变量为解释变量的方程组模型,方程组模型中共有型中共有N N个方程。显然,个方程。显然,VARVAR模型是由单变量模型是由单变量ARAR模型推广到模型推广到多变量组成的多变量组成的“向量向量”自回归模型。自回归模型。 对于两个变量(对于两个变量(N=2N=2),), 时,时,VAR(2)VAR(2)模型为模型为(i 1,2, ,p)i12( u u )Tttt
8、NtUu12ttNtyyy12ttNtyyy(x )TtttYy211221ti t ittttiYYUYYU6用矩阵表示:用矩阵表示: 待估参数个数为待估参数个数为2 2 2 22=2=用线性方程组表示用线性方程组表示VAR(2)VAR(2)模型:模型: 显然,方程组左侧是两个第显然,方程组左侧是两个第t t期内生变量;右侧期内生变量;右侧分别是两个分别是两个1 1阶和两个阶和两个2 2阶滞后应变量做为解释变量,阶滞后应变量做为解释变量,且各方程最大滞后阶数相同且各方程最大滞后阶数相同, ,都是都是2 2。这些滞后变量与。这些滞后变量与随机误差项不相关(假设要求)。随机误差项不相关(假设要求
9、)。121111112211212121122122122222ttttttttyyyuxxxu 1111112121122122112111221221222222ttttttttttttyyxyxuxyxyxu2PN7 由于仅有内生变量的滞后变量出现在等式的由于仅有内生变量的滞后变量出现在等式的右侧,故不存在同期相关问题,用右侧,故不存在同期相关问题,用“LSLS”法估计法估计参数,估计量具有一致和有效性。而随机扰动列参数,估计量具有一致和有效性。而随机扰动列向量的自相关问题可由增加作为解释应变量的滞向量的自相关问题可由增加作为解释应变量的滞后阶数来解决。后阶数来解决。 这种方程组模型主要
10、用于分析联合内生变量这种方程组模型主要用于分析联合内生变量间的动态关系。联合是指研究间的动态关系。联合是指研究N N个变量个变量 间的相互影响关系,动态是指间的相互影响关系,动态是指p p期滞后。故称期滞后。故称VARVAR模型是分析联合内生变量间的动态关系的动态模模型是分析联合内生变量间的动态关系的动态模型,而不带有任何约束条件,故又称为无约束型,而不带有任何约束条件,故又称为无约束VARVAR模型。建模型。建VARVAR模型的目的:模型的目的: (1 1)预测,且可用于长期预测;)预测,且可用于长期预测; (2 2)脉冲响应分析和方差分解,用于变量间)脉冲响应分析和方差分解,用于变量间的动
11、态结构分析。的动态结构分析。12ttNty yy8 所以所以, VAR, VAR模型既可用于预测模型既可用于预测, ,又可用于结构又可用于结构分析。近年又提出了结构分析。近年又提出了结构VARVAR模型(模型(SVARSVAR:Structural VARStructural VAR)。)。 有取代结构联立方程组模有取代结构联立方程组模型的趋势。由型的趋势。由VARVAR模型又发展了模型又发展了VECVEC模型模型。 2. VAR模型的特点模型的特点 VARVAR模型较联立方程组模型有如下特点:模型较联立方程组模型有如下特点: (1 1)VARVAR模型不以严格的经济理论为依据。模型不以严格的
12、经济理论为依据。在建模过程中只需明确两件事:第一,哪些变量在建模过程中只需明确两件事:第一,哪些变量应进入模型(要求变量间具有相关关系应进入模型(要求变量间具有相关关系格兰格兰杰因果关系杰因果关系 );第二,滞后阶数);第二,滞后阶数p p的确定(保证的确定(保证残差刚好不存在自相关);残差刚好不存在自相关);9 (2 2)VARVAR模型对参数不施加零约束(如模型对参数不施加零约束(如t t检检验);验); (3 3)VARVAR模型的解释变量中不含模型的解释变量中不含t t期变量,所期变量,所有与联立方程组模型有关的问题均不存在;有与联立方程组模型有关的问题均不存在; (4 4)VARVA
13、R模型需估计的参数较多。如模型需估计的参数较多。如VARVAR模型模型含含3 3个变量(个变量(N=3N=3),),最大滞后期为最大滞后期为p=2p=2,则有则有 =2=232=1832=18个参数需要估计;个参数需要估计; (5 5)当样本容量较小时,多数参数估计的精)当样本容量较小时,多数参数估计的精度较差,故需大样本,一般度较差,故需大样本,一般n50n50。 注意:注意: “VARVAR”需大写,以区别金融风险管理需大写,以区别金融风险管理中的中的VaRVaR。2PN10 建立建立VARVAR模型只需做两件事模型只需做两件事 第一,哪些第一,哪些变量可作为应变量?变量可作为应变量?VA
14、RVAR模型中应模型中应纳入具有相关关系的变量作为应变量,而变量间纳入具有相关关系的变量作为应变量,而变量间是否具有相关关系,要用格兰杰因果关系检验确是否具有相关关系,要用格兰杰因果关系检验确定。定。 第二,确定模型的最大滞后阶数第二,确定模型的最大滞后阶数p p。首先介绍首先介绍确定确定VAR模型最大滞后阶数模型最大滞后阶数p的方法:的方法:在在VARVAR模型模型中解释变量的最大滞后阶数中解释变量的最大滞后阶数p p太小,残差可能存在太小,残差可能存在自相关,并导致参数估计的非一致性。适当加大自相关,并导致参数估计的非一致性。适当加大p p值(即增加滞后变量个数),可消除残差中存在值(即增
15、加滞后变量个数),可消除残差中存在 二、二、VARVAR模型模型中滞后阶数中滞后阶数p p的确的确定方法定方法 11的自相关。但的自相关。但p p值又不能太大。值又不能太大。p p值过大,待估参数多值过大,待估参数多, ,自由度降低严重,直接影响模型参数估计的有效性。自由度降低严重,直接影响模型参数估计的有效性。这里介绍两种常用的确定这里介绍两种常用的确定p p值的方法。值的方法。 (1)用赤池信息准则()用赤池信息准则(AIC)和施瓦茨()和施瓦茨(SC)准)准则确定则确定p值。值。确定确定p p值的方法与原则是在增加值的方法与原则是在增加p p值的过程值的过程中,使中,使AICAIC和和
16、SCSC值同时最小。值同时最小。 具体做法是具体做法是:对年度:对年度、季度数据,一般比较到季度数据,一般比较到P=4P=4,即分别建立,即分别建立VAR(1)VAR(1)、VAR(2)VAR(2)、VAR(3)VAR(3)、VAR(4)VAR(4)模型模型,比较,比较AICAIC、SCSC,使它们同时取最小值的,使它们同时取最小值的p p值即为所求值即为所求。而对月度数据,一般比较到。而对月度数据,一般比较到P=12P=12。 当当AICAIC与与SCSC的最小值对应不同的的最小值对应不同的p p值时,只能用值时,只能用LRLR检验法。检验法。12 (2)用似然比统计量)用似然比统计量LR选
17、择选择p值。值。LRLR定义为定义为: 式中,式中, 和和 分别为分别为VAR(p)VAR(p)和和VAR(p+i)VAR(p+i)模型的对数似然函数值;模型的对数似然函数值;f f为自由度。为自由度。 用对数似然比统计量用对数似然比统计量LRLR确定确定P P的方法用案例说的方法用案例说明。明。 22 ln ( ) ln ()( )(11.2)LRl pl p iflnl(p+i)lnl(p)13格兰杰因果关系格兰杰因果关系 1. 1.格兰杰因果性定义格兰杰因果性定义 克莱夫克莱夫.格兰杰(格兰杰(Clive.Granger,1969)和西姆和西姆斯(斯(C.A.Sims,1972)分别提出
18、了含义相同的定义,分别提出了含义相同的定义,故除使用故除使用“格兰杰非因果性格兰杰非因果性”的概念外,也使用的概念外,也使用“格兰杰因果性格兰杰因果性”的概念。其定义为:的概念。其定义为: 如果由如果由 和和 的滞后值决定的的滞后值决定的 的条件分布与的条件分布与仅由仅由 的滞后值所决定的的滞后值所决定的 的条件分布相同,即的条件分布相同,即: (3)则称则称 对对 存在格兰杰非因果性。存在格兰杰非因果性。 111(|, )(|, )tttttf y yxf y y1txtytytytytytx14 格兰杰非因果性的另一种表述为其它条件不格兰杰非因果性的另一种表述为其它条件不变变,若加上若加上
19、 的滞后变量后对的滞后变量后对 的预测精度无的预测精度无显著性改善,则称显著性改善,则称 对对 存在格兰杰非因果性存在格兰杰非因果性关系。关系。 为简便,通常把为简便,通常把 对对 存在格兰杰非因果存在格兰杰非因果性关系表述为性关系表述为 对对 存在格兰杰非因果关系(存在格兰杰非因果关系(严格讲,这种表述是不正确的)。严格讲,这种表述是不正确的)。 顾名思义,格兰杰非因果性关系,也可以用顾名思义,格兰杰非因果性关系,也可以用“格兰杰因果性格兰杰因果性”概念。概念。 2. 2.格兰杰因果性检验格兰杰因果性检验 与与 间格兰杰因果关系回归检验式为间格兰杰因果关系回归检验式为1tx1txtxtxtx
20、tytytytyty15 (4) 如有必要,可在上式中加入位移项、趋势项如有必要,可在上式中加入位移项、趋势项、季节虚拟变量等。检验、季节虚拟变量等。检验 对对 存在格兰杰非因存在格兰杰非因果性的零假设是:果性的零假设是: 显然,如果(显然,如果(4)式中)式中 的滞后变量的回归的滞后变量的回归系数估计值都不显著,则系数估计值都不显著,则 H0 不能被拒绝,即不能被拒绝,即 对对 不不 存在存在 格兰杰因果性格兰杰因果性。反之,如果。反之,如果 的任何的任何一个滞后变量回归系数的估计值是显著的,则一个滞后变量回归系数的估计值是显著的,则 对对 存在格兰杰因果关系。存在格兰杰因果关系。11121
21、1ptitiititiipptitiititiiyyxuxxyup012:0pHtxtxtxtytytxtxty16类似的,可检验类似的,可检验 对对 是否存在格兰杰因果关系。是否存在格兰杰因果关系。 上述检验可构建上述检验可构建F统计量来完成。统计量来完成。 当当 时,接受时,接受H0, 对对 不存在格兰杰因不存在格兰杰因果关系;果关系; 当当 时,拒绝时,拒绝H0, 对对 存在格兰杰因果存在格兰杰因果关系。关系。 实际中,使用概率判断。实际中,使用概率判断。 注意:注意: (1)由式()由式(4)知)知,格兰杰因果关系检验式格兰杰因果关系检验式,是回是回归式,因此,要求受检变量是平稳的,对
22、非平稳变量归式,因此,要求受检变量是平稳的,对非平稳变量要求是协整的,以避免伪回归。故在进行格兰杰因果要求是协整的,以避免伪回归。故在进行格兰杰因果关系检验之前,要进行单位根检验、对非平稳变量要关系检验之前,要进行单位根检验、对非平稳变量要进行协整检验。进行协整检验。FFFFtxtxtytytytx17 (2)格兰杰因果性,指的是双向因果关系,)格兰杰因果性,指的是双向因果关系,即相关关系。单向因果关系是指因果关系,近年即相关关系。单向因果关系是指因果关系,近年有学者认为单向因果关系的变量也可作为内生变有学者认为单向因果关系的变量也可作为内生变量加入量加入VAR模型;模型; (3)此检验结果与
23、滞后期)此检验结果与滞后期p的关系敏感且两的关系敏感且两回归检验式滞后阶数相同。回归检验式滞后阶数相同。 (4)格兰杰因果性检验原假设为:宇宙集)格兰杰因果性检验原假设为:宇宙集、平稳变量(对非平稳变量要求是协整的)、大、平稳变量(对非平稳变量要求是协整的)、大样本和必须考虑滞后。样本和必须考虑滞后。 (5)格兰杰因果关系检验,除用于选择建)格兰杰因果关系检验,除用于选择建立立VAR模型的应变量外,也单独用于研究经济变模型的应变量外,也单独用于研究经济变量间的相关或因果关系(回归解释变量的选择)量间的相关或因果关系(回归解释变量的选择)以及研究政策时滞等。以及研究政策时滞等。 18 格兰杰因果
24、性检验的格兰杰因果性检验的EViews命令:命令: 在工作文件窗口,选中全部欲检序列名后,在工作文件窗口,选中全部欲检序列名后,选择选择Quicp/Group Statistics/Granger Causality Test,在弹出的序列名窗口,点击,在弹出的序列名窗口,点击OK即可。即可。 19 表表8 格兰杰因果性检验结果格兰杰因果性检验结果 由表由表8知,知,LGDPt、LCt 和和LIt之间存在格兰之间存在格兰杰因果性,故杰因果性,故LGDPt、LCt和和LIt均可做为均可做为VAR模模型的应变量。型的应变量。20建立建立VARVAR模型模型 在工作文件窗口,在主菜单栏选在工作文件窗
25、口,在主菜单栏选Quicp/Estimate VAR,OK,弹出,弹出VAR定义窗口,定义窗口,见图见图5。 图图5 VAR模型定义窗口模型定义窗口21 在在VAR模型定义窗口中填毕(选择包括截距模型定义窗口中填毕(选择包括截距)有关内容后,点击)有关内容后,点击OK。输出结果包含三部分。输出结果包含三部分,分别示于表,分别示于表9、表、表10和表和表11。 表表9 VAR模型参数估计结果模型参数估计结果2223表表10 VAR模型各方程检验结果模型各方程检验结果表表11 VAR模型整体检验结果模型整体检验结果24 将表将表9的的VAR(2)模型改写成矩阵形式模型改写成矩阵形式:1111.55
展开阅读全文