第2章质点动力学课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《第2章质点动力学课件.ppt》由用户(三亚风情)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 质点 动力学 课件
- 资源描述:
-
1、首首 页页 上上 页页 下下 页页退退 出出1牛顿牛顿第二章第二章 质点动力学质点动力学 前言前言2-1 2-1 牛顿运动定律牛顿运动定律* *2-2 2-2 非惯性系非惯性系 惯性力惯性力2-3 2-3 动量动量 动量守恒定律动量守恒定律 质心运动定律质心运动定律 2-4 2-4 功功 动能动能 势能机械能守恒定律势能机械能守恒定律* *2-5 2-5 理想流体的伯努利方程理想流体的伯努利方程首首 页页 上上 页页 下下 页页退退 出出2运动和物体相互作用的关系是人类几千年来不断探索的课题。运动和物体相互作用的关系是人类几千年来不断探索的课题。力的作用既有瞬时效应,又有积累效应:前者由牛顿定
2、律力的作用既有瞬时效应,又有积累效应:前者由牛顿定律描述,后者则由三大守恒律所描述;描述,后者则由三大守恒律所描述;在深一层次上,人们还发现,反映力在时、空过程中积累在深一层次上,人们还发现,反映力在时、空过程中积累效应的三大守恒律是与时、空的某种对称性相联系的。效应的三大守恒律是与时、空的某种对称性相联系的。原来物体作何种运动,既与物体间的相互作用有关,又与物原来物体作何种运动,既与物体间的相互作用有关,又与物体自身的性质有关。当物体内部出现某种非线性因素时,在一体自身的性质有关。当物体内部出现某种非线性因素时,在一定条件下即可能导致混沌。定条件下即可能导致混沌。从从17世纪开始,以牛顿定律
3、为基础建立起来的经典力学体系,世纪开始,以牛顿定律为基础建立起来的经典力学体系,一直被认为是一直被认为是“确定论确定论”的。但廿世纪的。但廿世纪80年代,人们发现了在年代,人们发现了在“确定论确定论”系统中,却可能出现系统中,却可能出现“随机行为随机行为”。在力学中,在力学中,物体与物体间的相互作用称之为力。物体与物体间的相互作用称之为力。为什么?为什么?首首 页页 上上 页页 下下 页页退退 出出32.1.1 2.1.1 惯性定律惯性定律 惯性参照系惯性参照系在运动的描述中,各种参考系都是等价的。但实验表明,在运动的描述中,各种参考系都是等价的。但实验表明,动力学规律并非是在任何参考系中都成
4、立。这就引出了惯性动力学规律并非是在任何参考系中都成立。这就引出了惯性参考系的问题。参考系的问题。1、惯性定律、惯性定律“孤立质点孤立质点”的模型:的模型:不受其它物体作用或离其他物体都足够远的质点。不受其它物体作用或离其他物体都足够远的质点。例如,太空中一远离所有星体的飞船。例如,太空中一远离所有星体的飞船。惯性定律:惯性定律:一孤立质点将永远保持其原来静止或匀速直线运动状态。一孤立质点将永远保持其原来静止或匀速直线运动状态。首首 页页 上上 页页 下下 页页退退 出出4BA静止时静止时aaAB惯性和惯性运动惯性和惯性运动惯性运动:物体不受外力作用时所作的运动。惯性运动:物体不受外力作用时所
5、作的运动。问题的提出:惯性定律是否在任何参照系中都成立?问题的提出:惯性定律是否在任何参照系中都成立?惯性:任何物体都有保持其原有运动状态的特性,惯性是物惯性:任何物体都有保持其原有运动状态的特性,惯性是物质固有的属性。质固有的属性。惯性和第一定律的发现,使人们最终把运动和力分离开来。惯性和第一定律的发现,使人们最终把运动和力分离开来。、惯性系和非惯性系、惯性系和非惯性系左图中,地面观左图中,地面观察者和车中观察者察者和车中观察者对于惯性定律运用对于惯性定律运用的认知相同吗?的认知相同吗?首首 页页 上上 页页 下下 页页退退 出出5 什么是惯性系:什么是惯性系:孤立物体相对于某参照系为静止或
6、作匀速孤立物体相对于某参照系为静止或作匀速 直线运动时,该参照系为惯性系。直线运动时,该参照系为惯性系。 如何确定惯性系如何确定惯性系只有通过力学实验。只有通过力学实验。*1 地球是一个近似程度很好的惯性系地球是一个近似程度很好的惯性系23109 . 5sma公22104 . 3sma自但但 相对于已知惯性系作匀速直线运动的参照系也是惯性系。相对于已知惯性系作匀速直线运动的参照系也是惯性系。 一切相对于已知惯性系作加速运动的参照系为非惯性系。一切相对于已知惯性系作加速运动的参照系为非惯性系。*2 太阳是一个精度很高的惯性系太阳是一个精度很高的惯性系 太阳对银河系核心的加速度为太阳对银河系核心的
7、加速度为11010sma日银 马赫认为:所谓惯性系,其实质应是相对于整个宇宙的平马赫认为:所谓惯性系,其实质应是相对于整个宇宙的平均加速度为零的参照系均加速度为零的参照系因此,惯性系只能无限逼近,而无因此,惯性系只能无限逼近,而无最终的惯性系。最终的惯性系。首首 页页 上上 页页 下下 页页退退 出出6牛顿第二定律:牛顿第二定律:物体受到外力作用时,它所获得加速度的大物体受到外力作用时,它所获得加速度的大小与合外力的大小成正比;与物体的质量成反比;加速度的方小与合外力的大小成正比;与物体的质量成反比;加速度的方向与合外力向与合外力 F 的方向相同。的方向相同。akmF比例系数比例系数k与单位制
8、有关,在国际单位制中与单位制有关,在国际单位制中k=1。2.1.2 牛顿第二定律惯性质量引力质量牛顿第二定律惯性质量引力质量其数学形式为其数学形式为o 物体之间的四种基本相互作用;物体之间的四种基本相互作用;电磁作用引力作用两种长程作用弱相互作用强相互作用两种短程作用1、关于力的概念、关于力的概念o 力是物体与物体间的相互作用,这种作用可使物体产生形力是物体与物体间的相互作用,这种作用可使物体产生形变,也可使物体获得加速度。变,也可使物体获得加速度。 力的概念是物质的相互作用在经典物理中的一种表述。力的概念是物质的相互作用在经典物理中的一种表述。首首 页页 上上 页页 下下 页页退退 出出73
9、 o 力的叠加原理力的叠加原理若一个物体同时受到几个力作用,则合力产生的加速度,等若一个物体同时受到几个力作用,则合力产生的加速度,等于这些力单独存在时所产生的加速度之矢量和。于这些力单独存在时所产生的加速度之矢量和。力的叠加原理的成立,不能自动地导致运动的叠加。力的叠加原理的成立,不能自动地导致运动的叠加。2、关于质量的概念关于质量的概念 3、牛顿第二定律给出了力、质量、加速度三者间瞬时的定、牛顿第二定律给出了力、质量、加速度三者间瞬时的定 量关系量关系o质量是物体惯性大小的量度:质量是物体惯性大小的量度:amF惯o引力质量与惯性质量的问题:引力质量与惯性质量的问题:2RmF引引aRGMmm
10、mm22211引惯引惯调节引力常数,调节引力常数,使使m引,引,m惯惯的比值为的比值为1。惯性质量与引力质量等价是广义相对论的出发点之一。惯性质量与引力质量等价是广义相对论的出发点之一。首首 页页 上上 页页 下下 页页退退 出出82.1.3 2.1.3 牛顿第三定律牛顿第三定律 1o作用力与反作用力是分别作用在两个物体上的,不是一对作用力与反作用力是分别作用在两个物体上的,不是一对平衡力。平衡力。2o作用力与反作用力是同一性质的力。作用力与反作用力是同一性质的力。3o若若A给给B一个作用,则一个作用,则A受到的反作用只能是受到的反作用只能是B给予的。给予的。* :牛顿第三定律只在实物物体之间
11、,且运动速度远小于:牛顿第三定律只在实物物体之间,且运动速度远小于光速时才成立。光速时才成立。首首 页页 上上 页页 下下 页页退退 出出92.1.4 牛顿定律的应用牛顿定律的应用1 1、牛顿定律只适用于惯性系;、牛顿定律只适用于惯性系;yyxxmaFmaF在平面直角坐标系在平面直角坐标系22mRRvmFmRdtdvmFn在平面自然坐标系在平面自然坐标系2 2、牛顿定律只适用于质点模型;、牛顿定律只适用于质点模型;3 3、具体应用时,要写成坐标分量式。、具体应用时,要写成坐标分量式。首首 页页 上上 页页 下下 页页退退 出出10若若F=常量常量 , 则则amF若若F=F(v) , 则则 dt
12、vmdvF)( 若若F=F(r) , 则则 22)(dtrdmrF、要根据力函数的形式选用不同的方程形式、要根据力函数的形式选用不同的方程形式运用举例:运用举例:首首 页页 上上 页页 下下 页页退退 出出11111 1Tm gm a牛顿定律只适用于惯性系牛顿定律只适用于惯性系例例2.1一细绳跨过一轴承光滑的定滑轮,绳的两端分别悬有质量为一细绳跨过一轴承光滑的定滑轮,绳的两端分别悬有质量为 和和 的物体的物体( ),如图,如图2.2所示所示.设滑轮和绳的质量可忽略不计,绳不能伸长,设滑轮和绳的质量可忽略不计,绳不能伸长,试求物体的加速度以及悬挂滑轮的绳中张力试求物体的加速度以及悬挂滑轮的绳中张
13、力.1m2m1m2m解分别以解分别以 , 定滑轮为研究定滑轮为研究对象,其隔离体受力如图对象,其隔离体受力如图2.2所示所示.1m2m对对 ,它在绳子拉力,它在绳子拉力 及重力及重力 的作用下以加速度的作用下以加速度 向上运动,取向上运动,取向上为正向,则有向上为正向,则有1m1T1m g1a对对 ,它在绳子拉力,它在绳子拉力 及重力及重力 作用下以加速度作用下以加速度 向下运动,以向下运动,以向下为正方向,则有向下为正方向,则有2m2T2m g2a2222m gTm a首首 页页 上上 页页 下下 页页退退 出出12由于定滑轮轴承光滑,滑轮和绳的质量可以略去,所以绳上各部分的张由于定滑轮轴承
14、光滑,滑轮和绳的质量可以略去,所以绳上各部分的张力都相等;又因为绳不能伸长,所以力都相等;又因为绳不能伸长,所以 和和 的加速度大小相等,即有的加速度大小相等,即有1m2m1212.TTTaaa,解和两式得21121212mm2m m.m +mm +magTg,由牛顿第三定律知: ,又考虑到定滑轮质量不计,所以有1122TTTTTT,12124m m2m +mTTg容易证明12(m +m )Tg首首 页页 上上 页页 下下 页页退退 出出1312aaa设x轴正向沿斜面向下,y轴正向垂直斜面向上,则对m应用牛顿定律列方程如下:例例2.2升降机内有一光滑斜面,固定在底板上,斜面倾角为升降机内有一光
15、滑斜面,固定在底板上,斜面倾角为.当升降机当升降机以匀加速度以匀加速度 竖直上升时,质量为竖直上升时,质量为m的物体从斜面顶端沿斜面开始下滑,的物体从斜面顶端沿斜面开始下滑,如图如图2.3所示所示.已知斜面长为已知斜面长为l,求物体对斜面的压力,物体从斜面顶点滑到,求物体对斜面的压力,物体从斜面顶点滑到底部所需的时间底部所需的时间.1a解以物体m为研究对象.其受到斜面的正压力N和重力mg.以地为参考系,设物体m相对于斜面的加速度为 ,方向沿斜面向下,则物体相对于地的加速度为2a211sin(sin )coscosxmgm aayNmgma方向:方向:首首 页页 上上 页页 下下 页页退退 出出
16、14解方程,得211()sin()cosagaNm ga由牛顿第三定律可知,物体对斜面的压力N与斜面对物体的压力N大小相等,方向相反,即物体对斜面的压力为1()cosm ga垂直指向斜面.因为m相对于斜面以加速度21()sinaga沿斜面向下作匀变速直线运动,所以222111()sin22la tgat得12L g+ sinta首首 页页 上上 页页 下下 页页退退 出出15解跳伞员的运动方程为2dvmgkvmdt改写运动方程为例例2.3跳伞运动员在张伞前的俯冲阶段,由于受到随速度增加而增大的空跳伞运动员在张伞前的俯冲阶段,由于受到随速度增加而增大的空气阻力,其速度不会像自由落体那样增大气阻力
17、,其速度不会像自由落体那样增大.当空气阻力增大到与重力相等时,当空气阻力增大到与重力相等时,跳伞员就达到其下落的最大速度,称为终极速度跳伞员就达到其下落的最大速度,称为终极速度.一般在跳离飞机大约一般在跳离飞机大约10 s,下落约下落约300400 m左右时,就会达到此速度左右时,就会达到此速度(约约50 m/s).设跳伞员以鹰展姿设跳伞员以鹰展姿态下落,受到的空气阻力为态下落,受到的空气阻力为 (k为常量为常量),如图,如图2.4(a)所示所示.试求跳伞试求跳伞员在任一时刻的下落速度员在任一时刻的下落速度.2Fkv显然,在 的条件下对应的速度即为终极速度,并用 表示:2kvmgTvTmgvk
18、2222TTmdvvvkdtdvkdtvvm首首 页页 上上 页页 下下 页页退退 出出16因t0时,v0;并设t时,速度为v,对上式两边取定积分:vtt222000TTdvkgvvmvdtdt由基本积分公式得T2TTTvv1gln2vvvvt最后解得TT-2gtvT2gtv1-ev1+ev当 时, .2TvtgTvv首首 页页 上上 页页 下下 页页退退 出出172220.24/TmgkNmsv设运动员质量m70 kg,测得终极速度 54 m/s,则可推算出Tv以此 值代入v(t)的公式,可得到如图2.4(b)所示的v-t函数曲线.Tv首首 页页 上上 页页 下下 页页退退 出出181、 单
19、位制:基本量、导出量单位制:基本量、导出量 单位制的任务是:规定哪些物理量是基本量及所使用的基本单位制的任务是:规定哪些物理量是基本量及所使用的基本量的数量级。量的数量级。 七个基本量为七个基本量为 长度、质量、时间、电流、温度、物质的量和发光强度长度、质量、时间、电流、温度、物质的量和发光强度2、 SI制中三个基本量的操作型定义制中三个基本量的操作型定义458,792,29911C米长度长度时间时间 1秒秒=铯铯-133原子基态的两个超精细能级之间跃原子基态的两个超精细能级之间跃迁时对应辐射的迁时对应辐射的9,192,631 ,770个周期。个周期。从基本量导出的量称为导出量,相应的单位称为
20、导出单位。从基本量导出的量称为导出量,相应的单位称为导出单位。* 2.1.5 国际单位制和量纲(自学提纲)国际单位制和量纲(自学提纲)首首 页页 上上 页页 下下 页页退退 出出193、量纲:、量纲: 因为导出量是由基本量导出的,所以导出量可用基本量的某因为导出量是由基本量导出的,所以导出量可用基本量的某种组合种组合(乘、除、幂等乘、除、幂等)表示。这种由基本量的组合来表示物表示。这种由基本量的组合来表示物理量的式子称为该物理量的量纲式,理量的式子称为该物理量的量纲式,例如:在例如:在SI制中制中 1LTdtdsv 2 LTa通过物理定律、定理、定义等将某个物理量表示成某种单位通过物理定律、定
21、理、定义等将某个物理量表示成某种单位 制中基本物理量的方次。制中基本物理量的方次。质量质量 千克质量千克质量 首首 页页 上上 页页 下下 页页退退 出出20 我们知道牛顿定律只在惯性系中成立,可是,在实际问我们知道牛顿定律只在惯性系中成立,可是,在实际问题中,有时我们又必须在非惯性系中去观察和处理问题。那题中,有时我们又必须在非惯性系中去观察和处理问题。那么物理上如何解决这个问题的呢?么物理上如何解决这个问题的呢? 通过本节的讨论,我们将会看到,如果引入一个惯性力通过本节的讨论,我们将会看到,如果引入一个惯性力的概念,那么我们在非惯性系中将仍可沿用牛顿定律的形式的概念,那么我们在非惯性系中将
22、仍可沿用牛顿定律的形式而使问题得到简化。而使问题得到简化。 首首 页页 上上 页页 下下 页页退退 出出211 1、惯性力的提出、惯性力的提出 设有一质量为设有一质量为m m的小球,放在一小车光滑的水平面上,的小球,放在一小车光滑的水平面上,平面上除小球平面上除小球( (小球的线度远远小于小车的横向线度)之外小球的线度远远小于小车的横向线度)之外别无他物,即小球水平方向合外力为零。然后突然使小车向别无他物,即小球水平方向合外力为零。然后突然使小车向右对地作加速运动,这时小球将如何运动呢?右对地作加速运动,这时小球将如何运动呢?sam(1)(1)地面上的观察者:地面上的观察者:小球将静止在原地,
23、符合牛顿第一定律;小球将静止在原地,符合牛顿第一定律;(2)(2)车上的观察者:车上的观察者:小球以小球以as相对于小车作加速运动;相对于小车作加速运动;sam首首 页页 上上 页页 下下 页页退退 出出22注意:此时小车是非惯性系,那么小车上的观察者如何解释注意:此时小车是非惯性系,那么小车上的观察者如何解释呢?呢? 我们假设车上的人熟知牛顿定律,尤其对加速度一定是由力我们假设车上的人熟知牛顿定律,尤其对加速度一定是由力引起的印象至深,以致在任何场合下,他都强烈地要求保留这引起的印象至深,以致在任何场合下,他都强烈地要求保留这一认知,于是车上的人说:小球之所以对小车有一认知,于是车上的人说:
24、小球之所以对小车有 -as 的加速度,的加速度,是因为受到了一个指向左方的作用力,且力的大小为是因为受到了一个指向左方的作用力,且力的大小为 - mas;但;但他同时又熟知,力是物体与物体之间的相互作用,而小球在水他同时又熟知,力是物体与物体之间的相互作用,而小球在水平方向不受其它物体的作用平方向不受其它物体的作用, 因此,物理上把这个力命名为惯性力。因此,物理上把这个力命名为惯性力。首首 页页 上上 页页 下下 页页退退 出出23(2)惯性力的大小等于惯性力的大小等于研究对象研究对象的质量的质量m与与非惯性系非惯性系的加速度的加速度as的乘积,的乘积,而方向与而方向与 as 相反,即相反,即
25、 samf 注意式中注意式中 m 是研究对象的质量,即在同一非惯性系中若选是研究对象的质量,即在同一非惯性系中若选取的研究对象不同,其质量不同,则取的研究对象不同,其质量不同,则 f 不同;不同; 2、惯性力的特点、惯性力的特点 (1) 惯性力不是物体间的相互作用。因此,没有反作用。惯性力不是物体间的相互作用。因此,没有反作用。 另外另外 f 与与 as 有关,非惯性系相对于惯性系的加速度的形式有关,非惯性系相对于惯性系的加速度的形式不同,则不同,则 f 也不同。也不同。 后面将从三个方面加以说明。后面将从三个方面加以说明。首首 页页 上上 页页 下下 页页退退 出出24 3、 非惯性系中的运
展开阅读全文