第8讲-因子分析与对应分析汇总课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《第8讲-因子分析与对应分析汇总课件.ppt》由用户(三亚风情)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 因子分析 对应 分析 汇总 课件
- 资源描述:
-
1、第第12章章 因子分析与对应分析因子分析与对应分析 主成分分析是将多个指标化为少数相互无关的综合指标的统计方法,通常数学上的处理就是将原来的p个指标做线性组合,作为新的综合指标,记第一个综合指标为F1。 选取这个线性组合的原则是令F1的方差最大,称F1为第一主成分;然后选取第二主成分F2,且F1与F2的协方差为0,类似构造其余的主成分。主成分分析主成分分析【Factor】过程过程对观测量数目没有严格要求第一节第一节 因子分析因子分析【FACTOR】过程主成分分析的推广和发展,对观测量数目要求至少是变量的5倍以上,且越多越好 一、因子分析简介做什么? 因子分析是多元统计分析中处理降维的一种统计方
2、法,它主要将具有错综复杂关系的变量或者样品综合为数量较少的几个因子,以再现原始变量与因子之间的相互关系。基本思想: (1)首先,通过变量(或样品)的相关系数矩阵(或相似系数矩阵)内部结构的研究,找出能控制所有变量(或样品)的少数几个随机变量(常称为因子)去描述多个变量(或样品)之间的相关(相似)关系; (2)然后,根据相关性(或相似性)的大小把变量(或样品)分组,使得同组内的变量(或样品)之间的相关性(或相似性)较高,但不同组的变量相关性(或相似性)较低。依据处理的对象不同,可以分为两类: R型因子分析,对变量变量做降维处理 Q型因子分析,对样本样本做降维处理 R型因子分析因子分析的几个概念:
3、1、因子载荷2、变量共同度 3、公因子Fj的方差贡献 4、因子旋转 因子旋转的目的是为了使得因子载荷阵的结构简化,便于对公共因子进行解释。 这里所谓的结构简化是使每个变量仅在一个公共因子上有较大的载荷,而在其余公共因子上载荷比较小。 这种变换因子载荷阵的方法称为因子轴的旋转。旋转的方法有很多种,如正交旋转,斜交旋轴等。 5、因子得分因子分析的一般步骤二、引例二、引例(练习一)(练习一)例1 利用因子分析过程分析各个城市的市政设施建设情况。数据文件:“各地区城市市政设施.sav”,下表是部分数据。【Analyze】/【Data Reduction】/【Factor】要求:选入分析变量(因子分析的
4、变量)(定义记录旋转条件)要求:输出相关系数矩阵;进行因子分析适用条件的检验Descriptives:选择需要输出的统计量(统计量)单变量描述统计量:各分析变量的均值、标准差及观测数原始分析结果:原变量的公因子方差、与变量相同个数的因子、各因子的特征根及其所占总方差的百分比和累计百分比(相关矩阵)所有变量间的相关系数矩阵显著性水平相关系数矩阵的行列式值KMO 检验和Bartlett球形检验相关系数矩阵的逆矩阵再生相关系数矩阵反映像协方差阵和相关阵要求:输出碎石图Extraction:选择因子提取的方法(选择公共因子的提取方法)公共因子的提取方法:(1)主成分分析法(默认);(2)不加权最小二乘
5、法;(3)广义最小二乘法;(4)极大似然法;(5)主轴因子法;(6) 因子法;(7)影像因子法相关矩阵协方差矩阵(设定公共因子提取标准)显示未经旋转变换的因子提取结果显示碎石图,体现各因子重要程度自定义提取因子的数量以特征根大于指定数值为提取标准(收敛时的最大迭代次数)Rotation:选择因子旋转的方法方差最大化正交旋转斜交旋转法四分旋转法平均正交旋转法斜交旋转法(设置旋转解的输出)(因子旋转的方法)输出主成分转换矩阵输出二维或三维的因子载荷图要求:输出因子得分系数矩阵Factor Scores:因子得分(在数据文件中建立一个新变量,用于保存各观测量的因子得分)(因子得分计算方法)回归法巴特
6、列特法安德森-鲁宾法(输出因子得分系数矩阵及因子协方差矩阵)要求:用均值代替缺失值Options对话框(选择缺失值处理方法)(选择系数的输出方式)因子载荷矩阵和结构矩阵按数值大小排序不显示绝对值小于指定数的载荷系数变量间相关性很高结果解读:结果解读:1、相关系数矩阵表接近0.9,适合做因子分析拒绝原假设,认为各变量之间不独立 2、 KMO检验和Bartlett球形检验结果表 注: KMO检验用于检验变量间的偏相关系数是否过小,一般, KMO大于0.9时效果最佳,小于0.5时不适宜做因子分析。 Bartlett球形检验用于检验相关系数矩阵是否是单位阵,如果结论是不拒绝该假设,则表示各个变量都是各
7、自独立的。该变量95.4的信息已经被提取 3、变量共同度表给出了提取公共因子前后各变量的共同度(衡量公共因子的相对重要性指标)说明:比如变量X1的共同度位0.954,即提取的公共因子对变量X1的方差做出了95.4%的贡献。 4、主成分表列出了所有的主成分,且按照特征根从大到小次序排列。说明:第一主成分特征根为5.280,方差贡献率为88.001%,前两个主成分的累计贡献率为94.504%,根据提取因子的条件特征值大于1,本例只选出一个因子。提取一个主成分即可5、碎石图按照特征根大小排列的主成分散点图。纵坐标为特征值,横坐标为因子数。10.977 11,60.927 16XFXF 6、因子负荷矩
8、阵用来反映各个变量的变异主要由哪些因子解释。10.185 10.18220.16330.18240.17850.1766FXXXXXX 7、因子得分系数矩阵得出用各个变量的线性组合表达的主成分。 8、因子得分的协方差矩阵反映各因子间的联系程度。注:本例只提取了一个公共因子,故表格内容无实际意义。例2 利用因子分析过程分析一年内各个城市的日照情况。数据文件:“主要城市日照数.sav” 。【Analyze】/【Data Reduction】/【Factor】要求:选入分析变量要求:输出因子分析适用条件的检验要求:输出碎石图要求:输出因子得分系数阵要求:采用方差最大化正交旋转;输出因子载荷图结果解读
展开阅读全文