书签 分享 收藏 举报 版权申诉 / 123
上传文档赚钱

类型第5章-图像变换-傅里叶变换课件.ppt

  • 上传人(卖家):三亚风情
  • 文档编号:2897636
  • 上传时间:2022-06-09
  • 格式:PPT
  • 页数:123
  • 大小:11.77MB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《第5章-图像变换-傅里叶变换课件.ppt》由用户(三亚风情)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    图像 变换 傅里叶变换 课件
    资源描述:

    1、第第5章章 图像变换图像变换问题的提出问题的提出v目的:为达到目的:为达到某种目的某种目的将原始图象变换映射到另将原始图象变换映射到另一个空间上,使得图象的某些特征得以一个空间上,使得图象的某些特征得以突出突出,以,以便于后面的便于后面的处理和识别处理和识别。v图像变换:图像变换: 原则上,所有的图像处理都是图像变换。原则上,所有的图像处理都是图像变换。 本章:图像变换是指数字图像经过正交变换,本章:图像变换是指数字图像经过正交变换,把原先二维空间域中的数据,变换到另外一个把原先二维空间域中的数据,变换到另外一个“变换域变换域”形式描述的过程。形式描述的过程。),(yxf),(yxg),(),

    2、(yxfyxgv变换后的图象,大部分变换后的图象,大部分能量能量都分布都分布于于低频谱段低频谱段,这对以后图象的,这对以后图象的压缩、压缩、传输传输都比较有利。使得运算次数减少,都比较有利。使得运算次数减少,节省时间。节省时间。卷积卷积l 考虑一维的情况,假设f(x)(x=0,1,A-1)以及g(x)(x=0,1,C-1)是两个有限离散函数,其线性卷积为 1)()()(*)()(10CANixgifxgxfxzNi任意函数与脉冲函数卷积的结果,是将该函数平移到脉冲所在位置。 对于图像二维函数的卷积,则 ; 1, 1 , 0; 1, 1 , 0),(),(),(1010NjMiljkiglkfj

    3、izMkNl相关相关 2个函数的相关定义为个函数的相关定义为 10*)()()()()(Niixgifxgxfxz其中其中f*(i)为为f(i)的复共轭的复共轭 1)()()(*)()(10CANixgifxgxfxzNi与卷积比较:5.2 傅里叶变换傅里叶变换非周期性的非周期性的连续信号连续信号周期性的周期性的连续信号连续信号非周期性的非周期性的离散谱离散谱取样作离散取样作离散化处理化处理周期性的周期性的连续谱连续谱离散化并延拓离散化并延拓为周期性信号为周期性信号周期性的周期性的离散谱离散谱非周期性的非周期性的连续波形连续波形例:求如图所示的函数的傅立叶谱例:求如图所示的函数的傅立叶谱xyf

    4、(x,y)Af(x,y)函数函数0, 0,00 ,0),(yYyxXxYyXxAyxftttSavYSauXSaAXYvYvYuXuXAXYvuF)sin()()()(|)sin(|)sin(| ),(|其中其傅立叶谱为:其傅立叶谱为:傅立叶谱在(0,0)处取最大值;傅立叶谱在 ux=n vy=n处取零值。说明:说明:傅立叶谱通常用lg(1+|F(u,v)|) 的图像显示,而不是F(u,v)的直接显示。因为傅立叶变换中,F(u,v)随u或v的衰减太快,这样只能表示F(u,v)高频项很少的峰,其余都难于看清楚。采用lg(1+|F(u,v)|) 显示1. 能更好得表示F(u,v)的高频(即F(u,

    5、v)0的点),这样便于对图像频谱的视觉理解;2. 这样显示的傅立叶频谱图像中,窗口中心为低频(图像能量),向外为高频(噪声和细节),从而便于分析。n 图像的频率是表征图像中图像的频率是表征图像中灰度变化剧烈程度灰度变化剧烈程度的的指标,是指标,是灰度在平面空间上的梯度灰度在平面空间上的梯度。n 对图像进行二维傅立叶变换得到频谱图,就是对图像进行二维傅立叶变换得到频谱图,就是图像梯度的分布图图像梯度的分布图,当然,当然频谱图上的各点与图像频谱图上的各点与图像上各点并不存在一一对应的关系,即使在上各点并不存在一一对应的关系,即使在 不移频不移频的情况下也是没有。的情况下也是没有。傅立叶频谱图上我们

    6、看到的傅立叶频谱图上我们看到的明暗不一的亮点,实际上图像上某一点与邻域点明暗不一的亮点,实际上图像上某一点与邻域点差异的强弱,即梯度的大小,也即该点的频率的差异的强弱,即梯度的大小,也即该点的频率的大小大小n如:在图像中灰度变化缓慢的区域,对应的频如:在图像中灰度变化缓慢的区域,对应的频率值很低;而对于在图像中灰度变化剧烈的区域,率值很低;而对于在图像中灰度变化剧烈的区域,对应的频率值较高。对应的频率值较高。例例 对比对比傅立叶变换的物理意义傅立叶变换的物理意义 梯度大则该点的亮度强,否则该点亮度弱。梯度大则该点的亮度强,否则该点亮度弱。 这样通过观察傅立叶变换后的频谱图,我们这样通过观察傅立

    7、叶变换后的频谱图,我们首先就可以看出,图像的能量分布,首先就可以看出,图像的能量分布,如果频如果频谱图中暗的点数更多,那么实际图像是比较谱图中暗的点数更多,那么实际图像是比较柔和的(因为各点与邻域差异都不大,梯度柔和的(因为各点与邻域差异都不大,梯度相对较小),反之,如果相对较小),反之,如果 频谱图中亮的点数频谱图中亮的点数多,那么实际图像一定是尖锐的,边界分明多,那么实际图像一定是尖锐的,边界分明且边界两边像素差异较大的。且边界两边像素差异较大的。 傅立叶变换的物理意义傅立叶变换的物理意义 对频谱移频到原点以后,可以看出图像的频率分对频谱移频到原点以后,可以看出图像的频率分布是以原点为圆心

    8、,对称分布的。布是以原点为圆心,对称分布的。 将频谱移频到圆心除了可以清晰地看出图像频率将频谱移频到圆心除了可以清晰地看出图像频率分布以外,还有一个好处,它可以分布以外,还有一个好处,它可以分离出有周期分离出有周期性规律的干扰信号性规律的干扰信号,比如正弦干扰,一副带有正,比如正弦干扰,一副带有正弦干扰,移弦干扰,移 频到原点的频谱图上可以看出除了中频到原点的频谱图上可以看出除了中心以外还存在以某一点为中心,对称分布的亮点心以外还存在以某一点为中心,对称分布的亮点集合,这个集合就是干扰噪音产生的,这时可以集合,这个集合就是干扰噪音产生的,这时可以很直观的通过在该位置放置带阻很直观的通过在该位置

    9、放置带阻 滤波器消除干扰滤波器消除干扰图像傅立叶变换原图像幅度谱相位谱图像傅立叶变换原图像幅度谱相位谱图像傅立叶变换 幅度谱告诉我们图像中某种频率的成份有幅度谱告诉我们图像中某种频率的成份有多少多少 相位谱告诉我们频率成份位于图像的什么相位谱告诉我们频率成份位于图像的什么位置位置通常我们只关心幅度谱通常我们只关心幅度谱图像傅立叶变换 从幅度谱中我们可以看出明亮线反映出原始图像的灰度级变化,这正是图像的轮廓边图像傅立叶变换 从幅度谱中我们可以看出明亮线和原始图像中对应的轮廓线是垂直的。如果原始图像中有圆形区域那么幅度谱中也呈圆形分布图像傅立叶变换 图像中的颗粒状对应的幅度谱呈环状,但即使只有一颗

    10、颗粒,其幅度谱的模式还是这样。图像傅立叶变换 这些图像没有特定的结构,左上角到右下角有一条斜线,它可能是由帽子和头发之间的边线产生的 图像的图像的傅里叶傅里叶变换变换是图像在是图像在空域空域和和频域频域之间的变换之间的变换 幅度幅度和相位相位哪个更能影响图像的形状呢请看如下试验先准备两张图片 a 图图b 图图图的幅值谱图的幅值谱图的幅值谱图的幅值谱ba图的相位谱图的相位谱图的相位谱图的相位谱ab 图图a a的幅值谱的幅值谱 和图和图b b的相位谱的相位谱 重新组合重新组合 图的幅值谱图的相位谱abb 图的大体轮廓 b图的幅值谱与图的幅值谱与a图的相位谱组合图的相位谱组合 图的相位谱图的幅值谱

    11、baa图的大体轮廓由此可以说明相位相位谱谱较幅值谱更能影响更能影响图像的形状形状。通俗的说,幅度决定图像的强弱,相位决定图像的频率。 先将幅值谱设为常数(这里设先将幅值谱设为常数(这里设为为1 1),然后和图像原来的相位谱),然后和图像原来的相位谱结合,进行傅里叶反变换结合,进行傅里叶反变换 图 aa 图的相位谱重构图 再再将将相位相位谱设为谱设为常常数数(这这里里设设为为1 1),然后和),然后和图图像原像原来来的幅的幅值谱值谱结结合,合,进进行傅里叶反行傅里叶反变换变换 ab图图的幅值谱重构图 由此更加说明由此更加说明相相位谱位谱较幅值谱更能较幅值谱更能影响图像的轮廓。影响图像的轮廓。(1

    12、)可分性)可分性从上式可以看出,一个二维傅立叶变换从上式可以看出,一个二维傅立叶变换可用二次一维傅立叶变换来实现可用二次一维傅立叶变换来实现傅立叶变换的性质傅立叶变换的性质1010102101022exp,12exp,2exp12exp,1,NxNxNyNxNyNuxjvxFNNvyjyxfNuxjNNvyuxjyxfNvuFf(x,y)(0,0)N-1N-1xyF(x,v)(0,0)N-1N-1xvF(u,v)(0,0)N-1N-1vu行变换行变换列变换列变换二维傅立叶变换分离成两个一维变换二维傅立叶变换分离成两个一维变换行变换行变换列变换列变换(2)平移性)平移性在空域中,图像原点平移到在

    13、空域中,图像原点平移到(x0,y0)时,其对应的频时,其对应的频谱谱F(u,v)要乘上一个负的指数项要乘上一个负的指数项)(200NvyuxjeNvyuxjvuFyyxxf00002exp,也就是说,当空域中也就是说,当空域中f(x,y)产生移动时,在频域中只发产生移动时,在频域中只发生相移,而傅立叶变换的幅值不变。生相移,而傅立叶变换的幅值不变。| ),(|),(|)(200vuFevuFvyuxj反之,在频域中,原点平移到反之,在频域中,原点平移到(u0,v0)时,其对应的时,其对应的f(x,y)要乘上一个正的指数项要乘上一个正的指数项)(200Nyvxuje0000,2exp,vvuuF

    14、Nyvxujyxf因此,当频域中因此,当频域中F(u,v)产生移动时,相应的产生移动时,相应的f(x,y)在空在空域中也只发生相移,而幅值不变。域中也只发生相移,而幅值不变。在数字图像处理中,我们常常将在数字图像处理中,我们常常将F(u,v)的原点移到的原点移到NN频域方阵的中心,以使能清楚地分析傅立叶变换谱的情频域方阵的中心,以使能清楚地分析傅立叶变换谱的情况,只需令:况,只需令:u0v0N/2则则)2,2() 1)(,() 1()()()()(200NvNuFyxfeeyxyxyxjNyvxuj得到:因子为:即,如果将图像频谱的原点从起点即,如果将图像频谱的原点从起点(0,0)移到图像中移

    15、到图像中心点心点(N/2,N/2),只要只要f(x,y)乘上乘上(1)(xy)因子后,再因子后,再进行傅立叶变换即可。进行傅立叶变换即可。(3)周期性和共轭对程称性)周期性和共轭对程称性周期性可表示为周期性可表示为 , 2, 1, 0,),(),(,nmnNymNxfyxfnNvmNuFNvuFvNuFvuF如果F(u,v)是f(x,y)的傅立叶变换,则F*(-u,-v)是f(-x,-y)的傅立叶变换的共轭函数F(u,v) = F*(-u,-v)|F(u,v) |= |F(-u,-v)|共轭对称性可表示为共轭对称性可表示为(4)旋转不变性)旋转不变性如果引入极坐标如果引入极坐标vuryrxsi

    16、ncossincos则则f(x,y)和和F(u,v)分别变为分别变为f(r,) 和和F( ,)在极坐标系中,存在以下变换对在极坐标系中,存在以下变换对)(),(00,Frf该式表明,如果空间域函数该式表明,如果空间域函数f(x,y)旋转旋转0角度后,角度后,相应的傅立叶变换相应的傅立叶变换F(u,v)在频域中也旋转同一在频域中也旋转同一0角,角,反之,反之,F(u,v)在频域中旋转在频域中旋转0角,其反变换角,其反变换f(x,y)在在空间域中也旋转空间域中也旋转0角角(5)分配性(线性)和比例性(缩放)分配性(线性)和比例性(缩放)傅立叶变换的分配性表明,傅立叶变换和反变换傅立叶变换的分配性表

    17、明,傅立叶变换和反变换对于加法可以分配,而对乘法则不行,即对于加法可以分配,而对乘法则不行,即傅立叶变换的比例性表明,对于二个标量傅立叶变换的比例性表明,对于二个标量a和和b,有有),(|1),(),(),(bvauFabbyaxfvuaFyxaf在空间比例尺度的展宽,相应于频域中比例尺度的在空间比例尺度的展宽,相应于频域中比例尺度的压缩,其幅值也减少为原来的压缩,其幅值也减少为原来的|1ab),(),(),(),(),(),(),(),(21212121yxfyxfyxfyxfyxfyxfyxfyxf(6)平均值性质)平均值性质定义二维离散函数的平均值为定义二维离散函数的平均值为10102)

    18、,(1),(NxNyyxfNyxf将将u=v=0代入二维离散傅立叶公式,可得代入二维离散傅立叶公式,可得 10102),(1)0,0(NxNyyxfNF比较上面两式,可看出比较上面两式,可看出)0 , 0(),(Fyxf若求二维离散信号若求二维离散信号f(x,y)的平均值,只需算出相的平均值,只需算出相应的傅立叶变换应的傅立叶变换F(u,v)在原点的值在原点的值F(0,0)(7)卷积定理)卷积定理卷积定理和相关定理都是研究两个函数的傅立叶变换卷积定理和相关定理都是研究两个函数的傅立叶变换之间的关系,这构成了空间域和频域之间的基本关系之间的关系,这构成了空间域和频域之间的基本关系对于两个二维连续

    19、函数对于两个二维连续函数f(x,y)和和g(x,y)的卷积定义为的卷积定义为ddyxgfyxgyxf),(),(),(),(其二维卷积定理可由下面关系表示其二维卷积定理可由下面关系表示设设),(),(),(),(vuGyxgvuFyxf),(),(),(),(),(),(),(),(vuGvuFyxgyxfvuGvuFyxgyxf则则(8)相关定理)相关定理对于二维连续函数对于二维连续函数f(x,y)和和g(x,y)的相关定义为的相关定义为 ddyxgfyxgyxf),(),(),(),(相关定理可表示为相关定理可表示为),(),(),(),(),(),(),(),(*vuGvuFyxgyxf

    20、vuGvuFyxgyxf 直接进行一个直接进行一个N N的的2-D傅里叶变换需要傅里叶变换需要N4次复次复数乘法运算和数乘法运算和N2(N2 1) 次复数加法运算次复数加法运算 快速傅里叶变换(快速傅里叶变换(FFT):): 将复数乘法和加法的次数减少为正比于将复数乘法和加法的次数减少为正比于N log2N 逐次加倍法:逐次加倍法:复数乘法次数由复数乘法次数由N2减少为减少为(N log2 N)/2 复数加法次数由复数加法次数由N2减少为减少为N log2 N 其原理:其原理:对于一个有限长序列对于一个有限长序列f(x)(0 x N-1),它的傅立叶它的傅立叶变换由下式表示:变换由下式表示:令

    21、令NjNjeWeW212傅立叶变换对可写为:傅立叶变换对可写为:(1)(2) 10101NuxuNxxuWuFNxfWxfuF1, 1 , 0/2exp)()(10NxNuxjxfuFNx将正变换将正变换(1)展开得到:展开得到:)1)(1(1)1(0)1()1(22120)1(11110)1(00100)1()1 ()0()1()1()1 ()0()2()1()1 ()0()1 ()1()1 ()0()0(NNNNNNNWNfWfWfNFWNfWfWfFWNfWfWfFWNfWfWfF从上式可以看出,要得到每一个频率分量,需进行从上式可以看出,要得到每一个频率分量,需进行N次乘法次乘法和和N

    22、-1次加法运算。次加法运算。要完成整个变换需要要完成整个变换需要N2次乘法和次乘法和N(N-1)次加法运算。次加法运算。当序列较长时,必然要花费大量的时间。当序列较长时,必然要花费大量的时间。1965年库利年库利-图基提出原始的图基提出原始的N点序列依次分解成一系列短点序列依次分解成一系列短序列,然后,求出这些短序列的离散傅立叶变换,以此来序列,然后,求出这些短序列的离散傅立叶变换,以此来减少乘法运算,例如,设:减少乘法运算,例如,设:12/, 1 , 0) 12()(12/, 1 , 0)2()(21NxxfxfNxxfxf由此,离散傅立叶变换可写成下面的形式:由此,离散傅立叶变换可写成下面

    23、的形式:12/0)12(12/0)2(12/0212/0110) 12()2()()()()(NxuxNNxuxNNxxuNNxxuNNxxuNWxfWxfWxfWxfWxfuF22kNkNWW因为:因为:所以:所以:F1(u)和和F2(u)分别是分别是f1(x)和和f2(x)的的N/2点点的傅立叶变换的傅立叶变换 )()() 12()2() 12()2()(2112/02/12/02/12/02/12/02/uFWuFWxfWWxfWWxfWxfuFuNNxxuNuNNxxuNNxuNxuNNxxuN由上面的分析可见,一个由上面的分析可见,一个N点的离点的离散傅立叶变换可由两个散傅立叶变换可

    24、由两个N/2点的傅立点的傅立叶变换得到。当叶变换得到。当N为为2的整数幂时,的整数幂时,则上式中的则上式中的F1(u)和和F2(u)还可以再还可以再分成两个更短的序列,因此计算时分成两个更短的序列,因此计算时间会更短。间会更短。 离散傅立叶变换已成为数字信号处理的重要离散傅立叶变换已成为数字信号处理的重要工具,然而,它的计算量达,运算时间长,工具,然而,它的计算量达,运算时间长,在某种程度上却限制了它的使用范围。在某种程度上却限制了它的使用范围。 快速算法大大提高了运算速度,在某些应用快速算法大大提高了运算速度,在某些应用场合已能作实时处理,并且应用在控制系统场合已能作实时处理,并且应用在控制

    25、系统中。中。 快速傅立叶变换不是一种新的变换,它是离快速傅立叶变换不是一种新的变换,它是离散傅立叶变换的一种算法,它是在分析离散散傅立叶变换的一种算法,它是在分析离散傅立叶变换中的多余运算的基础上,进而消傅立叶变换中的多余运算的基础上,进而消除这些重复工作的思想指导下得到的。除这些重复工作的思想指导下得到的。二维快速傅里叶变换的二维快速傅里叶变换的matlab实现实现在在MATLAB中,中, 函数函数fft:用于进行一维离散傅立叶变换(:用于进行一维离散傅立叶变换(DFT) 函数函数fft2 :用于进行二维:用于进行二维DFT 函数函数fftn :用于进行:用于进行N维维DFT另外另外 函数函

    26、数ifft:用于进行一维:用于进行一维DFT的快速傅立叶反变换的快速傅立叶反变换 函数函数ifft2 :用于进行二维:用于进行二维DFT的快速傅立叶反变换的快速傅立叶反变换 函数函数ifftn :用于进行:用于进行N维维DFT的快速傅立叶反变换的快速傅立叶反变换见例题见例题补充说明 1、图像经过二维傅立叶变换后,其变换系数矩、图像经过二维傅立叶变换后,其变换系数矩阵表明:若变换矩阵阵表明:若变换矩阵Fn原点设在中心,其频谱能原点设在中心,其频谱能量集中分布在变换系数短阵的中心附近量集中分布在变换系数短阵的中心附近(图中阴影图中阴影区区)。若所用的二维傅立叶变换矩阵。若所用的二维傅立叶变换矩阵F

    27、n的原点设的原点设在左上角,那么图像信号能量将集中在系数矩阵在左上角,那么图像信号能量将集中在系数矩阵的四个角上。这是由二维傅立叶变换本身性质决的四个角上。这是由二维傅立叶变换本身性质决定的。同时也表明定的。同时也表明图像能量集中低频区域图像能量集中低频区域 2 、变换之后的图像在原点平移之前四角是低频,、变换之后的图像在原点平移之前四角是低频,最亮,平移之后中间部分是低频,最亮,亮度大最亮,平移之后中间部分是低频,最亮,亮度大说明低频的能量大(幅角比较大)说明低频的能量大(幅角比较大) 傅里叶变换的应用傅里叶变换的应用 例例1:快速卷积:快速卷积 fft-2.m 例例2:图像特征定位:图像特

    28、征定位 fft-3.m5.4 离散余弦变换离散余弦变换离散余弦变换离散余弦变换(Discrete Cosine Transform-简称简称DCT)是傅里叶变换的一种特殊情况。在傅里叶级数是傅里叶变换的一种特殊情况。在傅里叶级数展开式中,被展开的函数是实偶函数时,其傅里叶展开式中,被展开的函数是实偶函数时,其傅里叶级数中只包含余弦项,称之为余弦变换。级数中只包含余弦项,称之为余弦变换。 二维离散余弦变换二维离散余弦变换10101010101010102) 12(cos2) 12(cos),(2),(2) 12(cos),(2)0 ,(2) 12(cos),(2), 0(),(1)0 , 0(N

    29、xNyNxNyNxNyNxNyNvyNuxyxfNvuFNuxyxfNuFNvyyxfNvFyxfNF 二维离散反余弦变换二维离散反余弦变换111111112) 12(cos2) 12(cos),(22) 12(cos)0 ,(22) 12(cos), 0(2)0 , 0(1),(NuNvNuNvNvyNuxvuFNNuxuFNNvyvFNFNyxfn傅立叶变换需要复数的乘法和加法运算,而复数运算比实数傅立叶变换需要复数的乘法和加法运算,而复数运算比实数运算要费时得多运算要费时得多n离散余弦变换是实值变换,计算复杂性适中,又具有可分离离散余弦变换是实值变换,计算复杂性适中,又具有可分离特性,还

    30、有快速算法,变换后这有很少的非零元素,所以被特性,还有快速算法,变换后这有很少的非零元素,所以被广泛地用在图象数据压缩编码算法中,如广泛地用在图象数据压缩编码算法中,如JPEG、MPEG-1、MPEG-2及及H.261等压缩编码国际标准都采用了离散余弦变换等压缩编码国际标准都采用了离散余弦变换编码算法编码算法 n其变换核是为实数的余弦函数,因而其变换核是为实数的余弦函数,因而DCT的计算速度比的计算速度比DFT快得多快得多例:例:56606159586059625759596157586059F原图像为:原图像为:DCTDCT变换变换236.254.51692.47491.56361.0592

    31、0.17681.17130.78031.76780.43872.251.71251.00310.28030.86780.1768D图像的离散余弦变换DCT矩阵的左上角代表低频分量,右下角代表高频分量由DCT域图像我们能够了解图像主要包含低频成份DCT域图像空间域图像 MATLABMATLAB图像处理工具箱提供了图像处理工具箱提供了dct2dct2函数函数和和idct2idct2函数进行二维函数进行二维DCTDCT变换和逆变换的计变换和逆变换的计算。算。例例1 yuxianbianhuan1.m1 yuxianbianhuan1.m 图像的离散沃尔什变换由于傅里叶变换和余弦变换的变换核由正弦、余

    32、弦函数组成,运算速度受影响,为此。我们在特定问题中往往引进不同的变换方法,要求运算简单且变换核矩阵产生方便。 Walsh Transform中的变换矩阵简单(只有1和1),占用存储空间少,产生容易,有快速算法,在大量数据需要实时处理的图像处理问题中,得到广泛应用图像的K-L变换K-L变换也叫霍特林(Hotelling)变换,是一种基于图像统计特性的变换K-L变换的协方差矩阵除对角线以外的元素都是零,消除了数据之间的相关性,从而在信息压缩方面起着重要作用。K-L 变换的应用人脸识别FT在信号处理中的局限性 用傅立叶变换提取信号的频谱需要利用信号的全部时域信息。 傅立叶变换没有反映出随着时间的变化

    33、信号频率成分的变化情况。 5.5小波变换小波变换在不少实际问题中,我们关心的是信号在局部范围中的特征, 例如: 在音乐信号中人们关心的是什么时刻演奏什么样的音符; 对地震波的记录人们关心的是什么位置出现什么样的反射波; 图像识别中的边缘检测关心的是信号突变部分的位置,即纹理结构。这些FT不能完成,需要引入时频局部化分析l 与与Fourier变换相比,小波变换是空间(时间)和频变换相比,小波变换是空间(时间)和频率的率的局部变换局部变换,它通过伸缩和平移等运算功能可对函,它通过伸缩和平移等运算功能可对函数或信号进行数或信号进行多尺度的细化分析多尺度的细化分析,最终达到,最终达到高频处时高频处时间

    34、细分、低频处频率细分间细分、低频处频率细分,能自动适应时频信号分析,能自动适应时频信号分析的要求,通过对高频采取逐渐精细的时域或空域步长,的要求,通过对高频采取逐渐精细的时域或空域步长,从而可以聚焦到分析对象的从而可以聚焦到分析对象的任意细节任意细节。解决了。解决了Fourier变换不能解决的许多困难,原则上,凡传统变换不能解决的许多困难,原则上,凡传统使用使用Fourier分析的方法,都可以用小波分析代替分析的方法,都可以用小波分析代替小波定义:小波定义:“小小”是指在时域具有紧支集或近似紧支集,是指在时域具有紧支集或近似紧支集,“波波”是指具有正负交替的波动性,直流分量为是指具有正负交替的

    35、波动性,直流分量为0。小波概念:是定义在有限间隔而且其平均值为零的小波概念:是定义在有限间隔而且其平均值为零的一种函数一种函数正弦波和小波(a) 正弦波曲线; (b) 小波曲线 (a)(b)波与小波的差异:一维连续小波的例子:Haar小波: others 01t1/2 1,-1/2t0 1,(t),一维连续小波的例子2. Mexico草帽小波:2t -2412)t-(132(t)/e3. Morlet小波:2-ttj2(t)/ee小波变换的含义是:把基本小波(母小波)的函数 作位移后,再在不同尺度下与待分析信号作内积,就可以得到一个小波序列( ) t 基本小波函数()的缩放和平移操作含义如下:

    36、 (1) 缩放。简单地讲, 缩放就是压缩或伸展基本小波, 缩放系数越小, 则小波越窄,如图所示。 小波的缩放操作 OOOf (t)f (t)f (t)tttf (t)(t);scale1f (t)(2t);scale0.5f (t)(4t);scale0.25 (2) 平移。简单地讲,平移就是小波的延迟或超前。在数学上, 函数f(t)延迟k的表达式为f(t-k),如图所示。 小波的平移操作(a) 小波函数(t); (b) 位移后的小波函数(t-k) Ot(t)Ot(t k)(a)(b) CWT计算主要有如下五个步骤: 第一步: 取一个小波, 将其与原始信号的开始一节进行比较。 第二步: 计算数

    37、值C, C表示小波与所取一节信号的相似程度,计算结果取决于所选小波的形状。 第三步:向右移动小波,重复第一步和第二步,直至覆盖整个信号,如所示。 第四步: 伸展小波, 重复第一步至第三步, 如图所示。 计算系数值C 原 始 信 号小 波 信 号C 0.0102计算平移后系数值C 原始信号小波信号计算尺度后系数值C 原始信号小波信号C0.2247 第五步:对于所有缩放,重复第一步至第四步。 小波的缩放因子与信号频率之间的关系是:缩放因子scale越小,表示小波越窄,度量的是信号的细节变化,表示信号频率越高;缩放因子scale越大, 表示小波越宽,度量的是信号的粗糙程度,表示信号频率越低。 (1)

    38、小波分解可以覆盖整个频域小波分解可以覆盖整个频域(提供了一个数提供了一个数学上完备的描述学上完备的描述)(2)小波变换通过选取合适的滤波器,可以极大小波变换通过选取合适的滤波器,可以极大的减小或去除所提取得不同特征之间的相关性的减小或去除所提取得不同特征之间的相关性(3)小波变换具有小波变换具有“变焦变焦”特性,在低频段可用特性,在低频段可用高频率分辨率和低时间分辨率高频率分辨率和低时间分辨率(宽分析窗口宽分析窗口),在高频段,可用低频率分辨率和高时间分辨率在高频段,可用低频率分辨率和高时间分辨率(窄分析窗口窄分析窗口)(4)小波变换实现上有快速算法小波变换实现上有快速算法(Mallat小波分

    39、解小波分解算法算法)小波变换在图像处理中的优点:小波变换在图像处理中的优点:广泛应用:信号处理、图像处理、模式识别、量子物理、非线性科学领域广泛应用:信号处理、图像处理、模式识别、量子物理、非线性科学领域5.5.2 小波变换用于图像压缩一般方法:一般方法:(1 1)利用二维小波分析进行图像压缩)利用二维小波分析进行图像压缩(2 2)二维信号压缩中的阈值的确定与作用命)二维信号压缩中的阈值的确定与作用命令令例例1 xiaobo1.m1 xiaobo1.m例例2 xiaobo2.m2 xiaobo2.m 原始图像 余弦变换压缩解压结果 小波变换压缩解压结果 5.5.3 小波变换用于图像去噪 对小波

    40、分解的高频系数进行阈值量化来达到消除噪声的目的。 例3 xiaobo3.m97of36图像变换主要内容:图像的代数变换图像的几何变换图像的离散傅立叶变换图像的离散余弦变换图像的离散沃尔什变换图像的K-L变换图像的小波变换98of36图像的代数变换代数运算包括算术运算和逻辑运算算术运算:加法运算:C(x,y) = A(x,y) + B(x,y)减法运算:C(x,y) = A(x,y) - B(x,y)乘法运算:C(x,y) = A(x,y) * B(x,y)除法运算:C(x,y) = A(x,y) / B(x,y)逻辑运算:非运算:g(x,y) = 255 - f(x,y)异或运算:g(x,y)

    41、 = f(x,y) h(x,y)或运算:g(x,y) = f(x,y) v h(x,y)与运算:g(x,y) = f(x,y) h(x,y)99of36加法运算加法运算可以去除加性(Additive)随机噪声加性随机噪声一般理解成背景噪声,比如闪电、雷击和大气中的电暴等等对于原图像f(x,y),有一个噪音图像集 gi(x,y) i =1,2,.M其中:gi(x,y) = f(x,y) + hi(x,y)M个图像的均值定义为:g(x,y) = 1/M (g0(x,y)+g1(x,y)+ gM(x,y)当噪音hi(x,y) 为互不相关,且均值为0时,上述图像均值将降低噪音的影响100of36举例:

    42、加法运算当M增大,即对图像相加次数增加时,去除加性(Additive)噪声的效果更加明显101of36加法运算生成图像叠加效果对于两个图像f(x,y)和h(x,y)的均值有:g(x,y) = f(x,y)/2 + h(x,y)/2会得到二次曝光的效果。推广这个公式为:g(x,y) = f(x,y) + h(x,y)其中+= 1,我们可以得到各种图像合成的效果也可以用于两张图片的衔接102of36举例:加法运算103of36减法运算可以去除不需要的叠加性图案设:背景图像b(x,y),前景背景混合图像f(x,y)g(x,y) = f(x,y) b(x,y)g(x,y) 为去除了背景的图像电视制作的

    43、蓝屏技术就基于此减去背景图像b(x,y)添加蓝色背景f(x,y)g(x,y)104of36减法运算可以检测同一场景两幅图像之间的变化设:时间1的图象为T1(x,y),时间2的图象为T2(x,y)g(x,y) = T2 (x,y) - T1(x,y)= =- -105of36乘法运算用二值蒙板图像与原图像做乘法进行图像的局部显示:106of36非运算可以获得一个阴图象255107of36非运算获得一个子图像的补图像255108of36异或运算0 11 1 010 00 1 10可以获得相交子图象 = =109of36或运算0 v 11 1 v 010 v 00 1 v 11可以合并子图像 = =

    44、110of36或运算0 v 11 1 v 010 v 00 1 v 11模板运算:提取感兴趣的子图像 = =111of36与运算0 10 1 000 00 1 11求两个子图像的相交子图 = =112of36与运算0 10 1 000 00 1 11模板运算:提取感兴趣的子图像 = =113of36图像的几何变换图像的几何变换主要包括:平移变换旋转变换镜像变换 水平镜像 垂直镜像缩放变换熟悉矩阵运算对于实现这些变换非常有帮助 114of36图像平移变换初始坐标为(x0,y0)的点经过平移(tx,ty)(以向右,向下为正方向)后,坐标变为(x1,y1)。这两点之间的关系是:x1=x0+txy1=

    45、y0+ty使用矩阵的形式来表达如下:115of36图像平移变换或许我们更加关心其逆变换:我们往往需要获取平移后的点(x1,y1)的颜色,而其颜色和平移前的点(x0,y0)相同很显然,逆变换过程是向相反的方向平移:另一个需要考虑的问题是:平移之后要不要放大图像?or?116of36图像旋转变换图像旋转通常是指在平面内绕中心旋转一定角度117of36图像旋转变换如何推导其旋转变换呢?x1=x0cosa+y0sina;y1=-x0sina+y0cosa;用矩阵表示为:118of36图像旋转变换但是请注意:我们旋转所在的坐标系和图像显示时对应的Windows屏幕坐标系是不一样的这里xoy为旋转坐标系,

    46、 xoy为屏幕坐标系119of36图像旋转变换实际上我们可以分为三步进行整个旋转变换:1.将坐标系xoy变成xoy;2.将该点顺时针旋转a角;3.将坐标系xoy变回xoy将上面三步变换进行合成得到三个矩阵的级联矩阵(x0,y0)和(x1,y1)都是xoy坐标系中的点使用wnew和hnew是因为图像放大了120of36图像镜像变换镜像(mirror)分为:水平镜像垂直镜像?原图原图水平水平镜像镜像垂直垂直镜像镜像121of36图像镜像变换但我们发现,经过镜像变换,图像的位置可能已经离开了屏幕范围,因此可能需要将镜像后的图像进行平移:水平镜像:垂直镜像:122of36图像缩放变换x方向缩放d1倍,y方向缩放d2倍,则:x = x*d1y = y*d2用矩阵表示为:镜像变换是缩放的特例123of36图像频率域图像空间域图像空间域图像频域图像频域图像空间域图像空间域正变换正变换逆变换逆变换处理起来处理起来更有效更有效更方便更方便更快捷更快捷l图像的傅立叶变换图像的傅立叶变换l图像的余弦变换图像的余弦变换l图像的沃尔什变换图像的沃尔什变换l图像的图像的K-L变换变换l图像的小波变换图像的小波变换

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:第5章-图像变换-傅里叶变换课件.ppt
    链接地址:https://www.163wenku.com/p-2897636.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库