光伏发电系统集成BIPV屋顶建筑课件.pptx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《光伏发电系统集成BIPV屋顶建筑课件.pptx》由用户(三亚风情)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 发电 系统集成 BIPV 屋顶 建筑 课件
- 资源描述:
-
1、Click to edit Master title style1华北电力大学 能源工程及自动化教研室光伏发电系统集成建筑能耗是我国能源消耗的主力军建筑能耗是我国能源消耗的主力军近年来,建筑与房地产业是我国经济增长的火车头之近年来,建筑与房地产业是我国经济增长的火车头之一,但与此同时,建筑能耗也是我国能源消耗的主力军。国一,但与此同时,建筑能耗也是我国能源消耗的主力军。国家建设部统计报告显示:家建设部统计报告显示: (在新西兰,住宅能耗占国家总能耗的(在新西兰,住宅能耗占国家总能耗的13%13%,而商业建筑,而商业建筑则为则为9%9%; 在澳大利亚,住宅和商业建筑能耗分别占国家总能耗的在澳大利
2、亚,住宅和商业建筑能耗分别占国家总能耗的12%12%和和8%8%) 节能中长期专项规划节能中长期专项规划着重指出:着重指出:Click to edit Master title style2华北电力大学 能源工程及自动化教研室光伏发电系统集成太阳能光伏建筑一体化(太阳能光伏建筑一体化(BIPVBIPV)是解决建筑高能耗的)是解决建筑高能耗的有效途径之一有效途径之一 根据国家发改委、国家统计局的统计,我国现有房屋建根据国家发改委、国家统计局的统计,我国现有房屋建筑总面积筑总面积400400亿平方米,其中城市可利用屋顶面积亿平方米,其中城市可利用屋顶面积8 8亿平方米,亿平方米,农村可利用屋顶面积
3、农村可利用屋顶面积3232亿平方米,合计可利用屋顶面积亿平方米,合计可利用屋顶面积4040亿平亿平方米。方米。 利用我国城乡房屋面积的利用我国城乡房屋面积的20%20%来进行太阳能发电,则能产来进行太阳能发电,则能产生生80GWp80GWp的发电能力,占全国总装机容量的的发电能力,占全国总装机容量的1/41/4,按全年满功率,按全年满功率发电发电15001500小时计算,年发电量可达小时计算,年发电量可达120TWh120TWh,约占全国总发电量,约占全国总发电量的的7.3%7.3%。Click to edit Master title style3华北电力大学 能源工程及自动化教研室光伏发电
4、系统集成光伏屋顶与光伏屋顶与BIPVBIPV 简单说来,光伏屋顶就是利用安装在建筑物顶部的光伏组件(太阳能电池)简单说来,光伏屋顶就是利用安装在建筑物顶部的光伏组件(太阳能电池)将光能转换为电能,供用电器使用。将光能转换为电能,供用电器使用。光伏与建筑的结合有如下两种方式,都可以通过逆变器、控制装置等成发电光伏与建筑的结合有如下两种方式,都可以通过逆变器、控制装置等成发电系统。系统。(1 1) 一种是建筑与光伏系统相结合,把封装好的的光伏组件(平板或曲面一种是建筑与光伏系统相结合,把封装好的的光伏组件(平板或曲面板)安装在居民住宅或建筑物的屋顶上,组成光伏发电系统。(见下图左)板)安装在居民住
5、宅或建筑物的屋顶上,组成光伏发电系统。(见下图左)(2 2) 另外一种是建筑与光伏器件相结合,是将光伏器件与建筑材料集成化另外一种是建筑与光伏器件相结合,是将光伏器件与建筑材料集成化,即光伏建筑一体化(,即光伏建筑一体化(BIPVBIPV),如将太阳能光伏电池制作成光伏玻璃幕墙、),如将太阳能光伏电池制作成光伏玻璃幕墙、太阳能电池瓦、太阳能防水卷材等,集实用与装饰美化为一体,达到节能环太阳能电池瓦、太阳能防水卷材等,集实用与装饰美化为一体,达到节能环保效果,是今后的发展光伏建筑一体化的趋势。(见下图右光伏玻璃屋顶)保效果,是今后的发展光伏建筑一体化的趋势。(见下图右光伏玻璃屋顶)Click t
6、o edit Master title style4华北电力大学 能源工程及自动化教研室光伏发电系统集成光伏屋顶工程德国柏林中央车站 BIPV天窗中国山西纳克 BIPV玻璃幕墙Click to edit Master title style5华北电力大学 能源工程及自动化教研室光伏发电系统集成应用图片应用图片Click to edit Master title style6华北电力大学 能源工程及自动化教研室光伏发电系统集成应用图片应用图片曲面屋顶 太阳能车库顶板Click to edit Master title style7华北电力大学 能源工程及自动化教研室光伏发电系统集成光伏与建筑结合
7、的安装方式光伏与建筑结合的安装方式采用普通太阳电池组件,安装在倾斜屋顶原来的建筑材料上采用普通太阳电池组件,安装在倾斜屋顶原来的建筑材料上采用特殊太阳电池组件,作为建筑材料安装在倾斜屋顶上采用特殊太阳电池组件,作为建筑材料安装在倾斜屋顶上采用普通太阳电池组件,安装在平屋顶原来的建筑材料上采用普通太阳电池组件,安装在平屋顶原来的建筑材料上采用特殊太阳电池组件,作为建筑材料安装在平屋顶上采用特殊太阳电池组件,作为建筑材料安装在平屋顶上采用普通或特殊太阳电池组件,作为幕墙安装在南立面上采用普通或特殊太阳电池组件,作为幕墙安装在南立面上采用特殊太阳电池组件,作为建筑幕墙安装在南立面上采用特殊太阳电池组
8、件,作为建筑幕墙安装在南立面上采用特殊太阳电池组件,作为天窗材料安装在天窗上采用特殊太阳电池组件,作为天窗材料安装在天窗上采用普通或特殊太阳电池组件,作为遮阳板安装在建筑上采用普通或特殊太阳电池组件,作为遮阳板安装在建筑上Click to edit Master title style8华北电力大学 能源工程及自动化教研室光伏发电系统集成BIPVBIPV斜屋顶斜屋顶 家庭用BIPV光伏发电屋顶,节省空间,BIPV组件与屋顶的完美集成。三、光伏建筑一体化BIPVClick to edit Master title style9华北电力大学 能源工程及自动化教研室光伏发电系统集成BIPVBIPV光
9、伏幕墙光伏幕墙 光伏幕墙BIPV与玻璃幕墙的和谐融会,达到双重的使用效果.三、光伏建筑一体化BIPVClick to edit Master title style10华北电力大学 能源工程及自动化教研室光伏发电系统集成BIPVBIPV采光顶采光顶三、光伏建筑一体化BIPVClick to edit Master title style11华北电力大学 能源工程及自动化教研室光伏发电系统集成三、光伏建筑一体化BIPV天窗采光顶,技术与艺术的和谐交融,将光线和室外的景色融入人的生活。Click to edit Master title style12华北电力大学 能源工程及自动化教研室光伏发电系
10、统集成三、光伏建筑一体化BIPVBIPV遮阳板Click to edit Master title style13华北电力大学 能源工程及自动化教研室光伏发电系统集成BIPV遮阳板,采光与遮阳的另类时尚,给室内空间一种全新的感觉。三、光伏建筑一体化BIPVClick to edit Master title style14华北电力大学 能源工程及自动化教研室光伏发电系统集成不同类型的太阳电池组件在建筑物上的适用程度不同类型的太阳电池组件在建筑物上的适用程度太阳电池类型太阳电池类型适用性适用性斜屋顶斜屋顶平屋顶平屋顶墙面墙面窗户窗户遮阳遮阳围栏围栏标准组件,有金属框架,表面为玻璃,背标准组件,有
11、金属框架,表面为玻璃,背面为不透明背板面为不透明背板+000标准组件,无金属框架,表面为玻璃,背标准组件,无金属框架,表面为玻璃,背面为不透明背板面为不透明背板+0双层玻璃组件,有一定比例的透明度双层玻璃组件,有一定比例的透明度00+两面受光太阳电池制作的双层玻璃组件,两面受光太阳电池制作的双层玻璃组件,有一定的透明度有一定的透明度000+表面玻璃,背面为透明表面玻璃,背面为透明TPT薄膜,有一定薄膜,有一定比例的透明度比例的透明度0+配合顾客需要而设计的组件配合顾客需要而设计的组件 (如不同形状的组件)(如不同形状的组件)+ + +“+ +”表示高适用性,表示高适用性,“0 0”表示低适用性
12、,表示低适用性,“- -”表示不适用表示不适用Click to edit Master title style15华北电力大学 能源工程及自动化教研室光伏发电系统集成光伏建筑一体化的优点光伏建筑一体化的优点 与建筑本身结合成为一个整体,不与建筑本身结合成为一个整体,不额外占用土地资源。额外占用土地资源。 可原地发电、原地用电,在一定距可原地发电、原地用电,在一定距离范围内可以节省电站送电网的投资。有离范围内可以节省电站送电网的投资。有光伏阵列和公共电网共同给负载供应电力,光伏阵列和公共电网共同给负载供应电力,增加了供电的可靠性。增加了供电的可靠性。 BIPVBIPV系统大部分发的是用电高峰时系
13、统大部分发的是用电高峰时的黄金电,可以大大缓解供电压力,经济的黄金电,可以大大缓解供电压力,经济和环境效益显著。和环境效益显著。Click to edit Master title style16华北电力大学 能源工程及自动化教研室光伏发电系统集成光伏建筑一体化的优点光伏建筑一体化的优点 光伏阵列安装在屋顶和墙壁等外围护光伏阵列安装在屋顶和墙壁等外围护结构上,吸收太阳能转化为电能,减少了墙结构上,吸收太阳能转化为电能,减少了墙体得热和室内空调冷负荷,保证室内的空气体得热和室内空调冷负荷,保证室内的空气品质。品质。 避免使用一般化石燃料发电的空气污避免使用一般化石燃料发电的空气污染和废渣污染。染
14、和废渣污染。 光伏阵列安装简便,可任意选择发电光伏阵列安装简便,可任意选择发电容量。容量。 促进部件的大规模生产,进一步促进部件的大规模生产,进一步降低部件的市场价格,对系统降低部件的市场价格,对系统的广泛应用有着极大的推动作用。的广泛应用有着极大的推动作用。 Click to edit Master title style17华北电力大学 能源工程及自动化教研室光伏发电系统集成四、光伏建筑一体化BIPV发展趋势 目前,太阳能光伏建筑一体化BIPV并网发电在国外已经得到电力部门的认可。预计50年后,仅BIPV屋顶并网发电就可提供全世界1/4的电能。国内BIPV的发展比国外稍晚了点,但是国内BI
15、PV的发展具有牢固的技术基础,发展比较稳重。总的来说BIPV的发展趋势主要有以下几点: 1) BIPV1) BIPV产品的标准结构诞生产品的标准结构诞生Click to edit Master title style18华北电力大学 能源工程及自动化教研室光伏发电系统集成2) BIPV2) BIPV标准成为主导光伏建筑设计的标准,而不像现在依附于建筑标准标准成为主导光伏建筑设计的标准,而不像现在依附于建筑标准四、光伏建筑一体化BIPV发展趋势Click to edit Master title style19华北电力大学 能源工程及自动化教研室光伏发电系统集成3) 3) 产生产生BIPVBIP
16、V的规范标准的规范标准, ,约束厂家的生产约束厂家的生产 四、光伏建筑一体化BIPV发展趋势Click to edit Master title style20华北电力大学 能源工程及自动化教研室光伏发电系统集成4) BIPV4) BIPV与建筑的集成度跟高与建筑的集成度跟高, ,与建筑结合更完善与建筑结合更完善四、光伏建筑一体化BIPV发展趋势Click to edit Master title style21华北电力大学 能源工程及自动化教研室光伏发电系统集成四、光伏建筑一体化BIPV发展趋势5) BIPV5) BIPV组件由白天发电组件由白天发电、美化建筑的原始功能美化建筑的原始功能,
17、,向夜间发光装饰建筑的多媒体化发展。向夜间发光装饰建筑的多媒体化发展。Click to edit Master title style22华北电力大学 能源工程及自动化教研室光伏发电系统集成6) BIPV6) BIPV智能化智能化, ,与智能建筑相融合与智能建筑相融合四、光伏建筑一体化BIPV发展趋势Click to edit Master title style23华北电力大学 能源工程及自动化教研室光伏发电系统集成四、光伏建筑一体化BIPV发展趋势7) BIPV7) BIPV组件实现建筑室内透光率的可变性,调节室内的采光。组件实现建筑室内透光率的可变性,调节室内的采光。Click to e
18、dit Master title style24华北电力大学 能源工程及自动化教研室光伏发电系统集成四、光伏建筑一体化BIPV发展趋势8) BIPV8) BIPV并网发电技术更加智能化、多元化,发电成本降低。并网发电技术更加智能化、多元化,发电成本降低。Click to edit Master title style25华北电力大学 能源工程及自动化教研室光伏发电系统集成四、光伏建筑一体化BIPV发展趋势9) 9) 实现实现BIPVBIPV组件与楼宇自动一体化。组件与楼宇自动一体化。Click to edit Master title style26华北电力大学 能源工程及自动化教研室光伏发电
19、系统集成 随着全球太阳能光伏发电比重的增加,光伏发电是目前解决能源与环境问题的有效途径。大型荒漠光伏电站由于其自身占地面积大的缺点,未来光伏发电的主流将是光伏建筑一体化BIPV发电。 根据国外BIPV和国内近几年BIPV的发展应用来看,今后光伏建筑一体化BIPV的发展将会是与建筑设计充分融合,应用形式更加多样化,更多应用于商业建筑幕墙、居民住宅、学校、医院、机场、铁路站台等。同时,通过智能电网技术在低压端与电网、实现并网连接,提高用电的可靠性。四、光伏建筑一体化BIPV发展趋势 总结:总结:Click to edit Master title style27华北电力大学 能源工程及自动化教研室
20、光伏发电系统集成相关补贴政策相关补贴政策 财政补贴将重点支持太阳能光电建筑一体化安装且发电主要用于解决建筑用能的项目,从项目类型上主要包括三类: 一是建材型,指将太阳能电池与瓦、砖、卷材、玻璃等建筑材料复合在一起成为不可分割的建筑构件或建筑材料,如光伏瓦、光伏砖、光伏屋面卷材、玻璃光伏幕墙、光伏采光顶等; 二是构件型,指与建筑构件组合在一起或独立成为建筑构件的光伏构件,如以标准普通光伏组件或根据建筑要求定制的光伏组件构成雨篷构件、遮阳构件等; 三是与屋顶、墙面结合安装型,指在平屋顶上安装、坡屋面上顺坡架空安装以及在墙面上与墙面平行安装等形式。Click to edit Master title
21、 style28华北电力大学 能源工程及自动化教研室光伏发电系统集成财建2009129 号文件关于印发太阳能光电建筑应用财政补助资金管理暂行办法在实际项目申报是重点专注以下几点:在实际项目申报是重点专注以下几点: (1 1) 安装类型和补贴对应的补贴标准安装类型和补贴对应的补贴标准 项目安装类型项目安装类型 补贴标准补贴标准 建材型:建材型: 太阳能电池与建筑材料复合在一起成为不可分割的建筑构件或建筑太阳能电池与建筑材料复合在一起成为不可分割的建筑构件或建筑材料。材料。 不超过不超过 20 20 元元/ /瓦瓦 构件型:构件型: 指与建筑构件组合在一起或独立成为建筑构件的光伏构件。指与建筑构件
22、组合在一起或独立成为建筑构件的光伏构件。 不超过不超过 20 20 元元/ /瓦瓦 与屋顶、墙面结合安装型与屋顶、墙面结合安装型:指在平屋顶上安装、坡屋面上顺坡架空安装以及:指在平屋顶上安装、坡屋面上顺坡架空安装以及在墙面上与墙面平行安装等形式。在墙面上与墙面平行安装等形式。 不超过不超过 15 15 元元/ /瓦瓦 (2 2) 优先支持项目优先支持项目 已出台并落实光电发展扶持政策的地区项目;已出台并落实光电发展扶持政策的地区项目; 并网式太阳能光电建筑应用项目;并网式太阳能光电建筑应用项目; 太阳能光伏组件与建筑物实现构件化、一体化项目;太阳能光伏组件与建筑物实现构件化、一体化项目; 学校
23、、医院、政府机关等公共建筑应用光电项目。学校、医院、政府机关等公共建筑应用光电项目。 Click to edit Master title style29华北电力大学 能源工程及自动化教研室光伏发电系统集成1 1设计原则设计原则光伏建筑一体化是光伏系统构成或依附于建筑的一种新能源利用光伏建筑一体化是光伏系统构成或依附于建筑的一种新能源利用形式,其主体是建筑,客体是光伏系统。因此,形式,其主体是建筑,客体是光伏系统。因此,BIPV设计应以不损害设计应以不损害和影响建筑的效果、结构安全、功能和使用寿命为基本原则,任何对和影响建筑的效果、结构安全、功能和使用寿命为基本原则,任何对建筑本身产生损害和不
24、良影响的建筑本身产生损害和不良影响的BIPV设计都是不合格的设计。设计都是不合格的设计。建筑设计建筑设计BIPV的设计应从建筑设计入手,首先对建筑物所处地的地理气候的设计应从建筑设计入手,首先对建筑物所处地的地理气候条件及太阳能的资源情况进行分析,这是决定是否选用条件及太阳能的资源情况进行分析,这是决定是否选用BIPV的先决条的先决条件;其次是考虑建筑物的周边环境条件,即选用件;其次是考虑建筑物的周边环境条件,即选用BIPV的建筑部分接受的建筑部分接受太阳能的具体条件,如被其他建筑物遮档,也不必考虑选用太阳能的具体条件,如被其他建筑物遮档,也不必考虑选用BIPV;第;第三是与建筑物的外装饰的协
25、调,光伏组件给建筑设计带三是与建筑物的外装饰的协调,光伏组件给建筑设计带 来了新的挑战来了新的挑战与机遇,画龙点睛的与机遇,画龙点睛的BIPV设计会使建筑更富生机,环保绿色的设计理设计会使建筑更富生机,环保绿色的设计理念更能体现建筑与自然的结合;第四,考虑光伏组件的吸热对建筑热念更能体现建筑与自然的结合;第四,考虑光伏组件的吸热对建筑热环境的改变。环境的改变。Click to edit Master title style30华北电力大学 能源工程及自动化教研室光伏发电系统集成3 3发电系统设计发电系统设计BIPVBIPV光伏系统设计包含三部分,分别为光伏方阵设计、光伏组件设计和光光伏系统设计
展开阅读全文