回归直线方程—最小二乘法分析课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《回归直线方程—最小二乘法分析课件.ppt》由用户(三亚风情)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 回归 直线 方程 最小二乘法 分析 课件
- 资源描述:
-
1、问题问题:在一次对人体脂肪含量与年龄关系的研究中,在一次对人体脂肪含量与年龄关系的研究中, 研究人员获得了一组样本数据:研究人员获得了一组样本数据:年年龄龄2327394145495053545657586061脂脂肪肪9.517.821.225.927.526.328.229.630.231.430.833.535.234.6散点图散点图回回归归直直线线回归直线概念:散点图中心的分布从整体上看回归直线概念:散点图中心的分布从整体上看大致是一条直线附近,该直线称为回归直线大致是一条直线附近,该直线称为回归直线 求出回归直线的方程求出回归直线的方程我们就可以比较清楚地了解年龄与体我们就可以比较清
2、楚地了解年龄与体内脂肪含量之间的相关性内脂肪含量之间的相关性由此可以预测相应年龄段的脂肪含量由此可以预测相应年龄段的脂肪含量那我们又该如何具体求这个回归方程呢?那我们又该如何具体求这个回归方程呢?方法汇总方法汇总?1.画一条直线画一条直线2.测量出各点测量出各点与它的距离与它的距离3.移动直线,移动直线,到达某一位置到达某一位置使距离的和最使距离的和最小,测量出此小,测量出此时直线的斜率时直线的斜率与截距,得到与截距,得到回归方程。回归方程。1.选取两点作选取两点作直线直线ps:使直线两:使直线两侧侧 的点的个的点的个数基本相同。数基本相同。1.在散点图中在散点图中多取几组点,多取几组点,确定
3、出几条直确定出几条直线的方程线的方程2.分别求出各分别求出各条直线的斜率、条直线的斜率、截距的平均数截距的平均数3.将这两个平将这两个平均数当成回归均数当成回归方程的斜率与方程的斜率与截距。截距。法一法一法四法四法二法二法三法三? 上面三种方法都有一定的道理,但总让人感到上面三种方法都有一定的道理,但总让人感到可靠性不强可靠性不强. . 回归直线与散点图中各点的位置用数学的方法回归直线与散点图中各点的位置用数学的方法来刻画应具有怎样的关系?来刻画应具有怎样的关系? 方法汇总方法汇总1.画一条直线画一条直线2.测量出各点测量出各点与它的距离与它的距离3.移动直线,移动直线,到达某一位置到达某一位
4、置使距离的和最使距离的和最小,测量出此小,测量出此时直线的斜率时直线的斜率与截距,得到与截距,得到回归方程。回归方程。1.选取两点作选取两点作直线直线ps:使直线两:使直线两侧侧 的点的个的点的个数基本相同。数基本相同。1.在散点图中在散点图中多取几组点,多取几组点,确定出几条直确定出几条直线的方程线的方程2.分别求出各分别求出各条直线的斜率、条直线的斜率、截距的平均数截距的平均数3.将这两个平将这两个平均数当成回归均数当成回归方程的斜率与方程的斜率与截距。截距。最最小小二二乘乘法法法一法一法四法四法二法二法三法三求回归方程的关键求回归方程的关键如何使用如何使用数学方法数学方法来刻画来刻画“从
5、整体上看,从整体上看,各点到此直线的距离最小各点到此直线的距离最小”。假设两个具有线性相关关系的变量的一组数假设两个具有线性相关关系的变量的一组数据据:(x1, y1),(x2, y2),. (xn, yn)下面讨论如何表达这些点与一条直线下面讨论如何表达这些点与一条直线y=bx+a之间的距离。之间的距离。1.设已经得到具有线性相关关系的变量的一组数据:设已经得到具有线性相关关系的变量的一组数据: (x1,y1),(),(x2,y2),),(,(xn,yn)2.设所求的回归直线方程为设所求的回归直线方程为Y=bx+a,其中其中a,b是是待定的系数。当变量待定的系数。当变量x取取x1,x2,xn
6、时,可以得时,可以得到到 Yi=bxi+a(i=1,2,n)3.它与实际收集得到的它与实际收集得到的yi之间偏差是之间偏差是 yi-Yi=yi-(bxi+a)(i=1,2,n)(x1,y1)(x2,y2)(xi ,yi )yi-Yiy x这样,用这这样,用这n个偏差的和来刻画个偏差的和来刻画“各点与此直线的整体偏差各点与此直线的整体偏差”是比较合适的。是比较合适的。因此用因此用 表示各点到直线表示各点到直线y=bx+a的的“整体距离整体距离” (x1 ,y1)(x2 ,y2)(xi ,yi)yi-(bxi+a)(x(x1 1,y,y1 1) )(x(x2 2,y y2 2) )(x(xi i,
展开阅读全文