书签 分享 收藏 举报 版权申诉 / 35
上传文档赚钱

类型决策树模型QUEST--谢邦昌教授.课件.ppt

  • 上传人(卖家):三亚风情
  • 文档编号:2888978
  • 上传时间:2022-06-08
  • 格式:PPT
  • 页数:35
  • 大小:691KB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《决策树模型QUEST--谢邦昌教授.课件.ppt》由用户(三亚风情)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    决策树 模型 QUEST 谢邦昌 教授 课件
    资源描述:

    1、统计分析、数据挖掘与商业智能应用研究小组统计分析、数据挖掘与商业智能应用研究小组决策树模型决策树模型 -QUEST 报告人:李福娟报告人:李福娟指导教师:谢邦昌指导教师:谢邦昌时间:时间:2007年年11月月20日日统计分析、数据挖掘与商业智能应用研究小组统计分析、数据挖掘与商业智能应用研究小组Clementine的决策树模型的决策树模型 决策树(Decision Tree)模型,也称规则推理模型 通过对训练样本的学习,建立分类规则 依据分类规则,实现对新样本的分类 属于有指导(监督)式的学习方法,有两类变量: 目标变量(输出变量) 属性变量(输入变量) 决策树模型与一般统计分类模型的主要区别

    2、 决策树的分类是基于逻辑的,一般统计分类模型是基于非逻辑的 基于逻辑是指通过对属性变量值的布尔比较来实现分类判断统计分析、数据挖掘与商业智能应用研究小组统计分析、数据挖掘与商业智能应用研究小组Clementine的决策树模型的决策树模型 决策树模型的特点优势: 推理过程容易理解,决策推理过程可以表示成IF、THEN的形式 推理过程完全依据属性变量的取值特点 可自动忽略对目标变量没有贡献的属性变量,也为判断属性变量的重要性,减少变量数目提供参考统计分析、数据挖掘与商业智能应用研究小组统计分析、数据挖掘与商业智能应用研究小组Clementine的决策树模型的决策树模型 决策树模型的主要算法:决策树

    3、模型的主要算法: C&RT C5.0 CHAID QUEST统计分析、数据挖掘与商业智能应用研究小组统计分析、数据挖掘与商业智能应用研究小组QUEST算法算法 QUEST:Quick Unbiased Efficient Statistical Tree 它是 Loh和Shih1997年提出的建立决策树的一种二元分类方法。 QUEST算法也主要涉及分支变量和分割值的确定问题,但它将分支变量选择和分割点选择以不同的策略进行处理 它的运算过程比CR更简单有效。统计分析、数据挖掘与商业智能应用研究小组统计分析、数据挖掘与商业智能应用研究小组要求要求 属性变量(输入变量)分类型变量、数值型变量 目标变

    4、量(输出变量)必须是二值分类型变量(如果是多值的转化成二值的),建立二叉树 模型中涉及到的顺序变量必须存储为数值型 该模型中不可以应用权数变量统计分析、数据挖掘与商业智能应用研究小组统计分析、数据挖掘与商业智能应用研究小组确定分支变量确定分支变量 分别检验各属性变量对目标变量的独立性。 如果属性变量为定类的,则采用卡方检验 如果属性变量为定距,则采用F检验 选择P-值最小且小于显著性水平的属性变量作为当前的最佳分支变量统计分析、数据挖掘与商业智能应用研究小组统计分析、数据挖掘与商业智能应用研究小组确定分支变量确定分支变量 如果最小的P-值尚未小于显著性水平: 在F检验检验中,意味着在水平下目标

    5、变量不同分类下属性变量的均值不存在显著。此时,应利用LeveneF检验其方差。选择方差齐性最不显著的变量可作为当前的分支变量 否则,该树节点无法再分支统计分析、数据挖掘与商业智能应用研究小组统计分析、数据挖掘与商业智能应用研究小组 当前分支变量是定距的当前分支变量是定距的 如果目标变量有两个以上的分类水平,则应首先将其合并为两个超类(目标变量的预处理) 分别计算目标变量不同分类下当前分支变量的均值 如果各均值没有显著差异,则将权重最大(该组包含的样本个数最多)组所对应的属性变量值作为一组,其余为另一组 如果各均值存在显著差异,则利用2-Means聚类将样本聚成2类(初始类中心为两个极均值),从

    6、而使将目标变量值合并成两类(多分类问题转换为二分类问题)确定分割值确定分割值统计分析、数据挖掘与商业智能应用研究小组统计分析、数据挖掘与商业智能应用研究小组确定分割值确定分割值当前分支变量是定类的当前分支变量是定类的先将定类分支变量转化为定矩变量 将该分支变量转换为哑变量组,依据目标变量,建立若干个判别函数,并取第一个典型判别函数(特征根最大) 计算各样本在第一个判别函数坐标上的值,作为值再依据前述定距分支变量的方法处理 统计分析、数据挖掘与商业智能应用研究小组统计分析、数据挖掘与商业智能应用研究小组Clementine11.0中的应用中的应用 市场研究案例 一个有限电视公司做了一项市场调查以

    7、了解哪些用户会订阅某种交互式的新闻服务。 选择的变量有:年龄(age)、性别(gender)、受教育程度(educate)、收入水平(inc)、每天看电视时间(tvday)、家庭拥有孩子个数(childs)。(NewsChan.sav )统计分析、数据挖掘与商业智能应用研究小组统计分析、数据挖掘与商业智能应用研究小组Clementine11.0中的应用中的应用统计分析、数据挖掘与商业智能应用研究小组统计分析、数据挖掘与商业智能应用研究小组Clementine11.0中的应用中的应用可以通过连接并执行输出节点Table查看数据源数据统计分析、数据挖掘与商业智能应用研究小组统计分析、数据挖掘与商业

    8、智能应用研究小组Clementine11.0中的应用中的应用 设置变量类型设置变量类型输入变量输出变量统计分析、数据挖掘与商业智能应用研究小组统计分析、数据挖掘与商业智能应用研究小组Clementine11.0中的应用中的应用 建立建立QUEST决策树模型(决策树模型(Modeling-QUEST) 建立一个QUEST结点与源数据相连,然后右击对QUEST结点进行编辑统计分析、数据挖掘与商业智能应用研究小组统计分析、数据挖掘与商业智能应用研究小组Clementine11.0中的应用中的应用 QUEST节点的节点的Model选项选项分割数据集 训练样本 检验样本模式Generate model直

    9、接给出最终模型;Launch Interactive session可以逐层建立,修改和删除节点。Use tree directives指定任意层节点的分割方式或子节点数最大树深 自定义判别树的最大层数统计分析、数据挖掘与商业智能应用研究小组统计分析、数据挖掘与商业智能应用研究小组Clementine11.0中的应用中的应用 QUEST节点的高级(节点的高级(expert)选项框)选项框最大替代数:当某记录有缺失值时,QUEST会根据与其相似的记录所归入节点的取值进行替代分裂的显著性水平:设定分裂标准, 越小,则树的分叉越少终止条件修剪树:use standard error rule删除分类

    10、不纯的节点先验概率统计分析、数据挖掘与商业智能应用研究小组统计分析、数据挖掘与商业智能应用研究小组Clementine11.0中的应用中的应用 分类回归树节点终止选项分类回归树节点终止选项终止法则决定何时终止分割树的具体分支设置最小分支数目以避免分割出过小的子群使用百分数:按照占整个训练集的百分比来指定大小使用绝对值:用绝对记录数来指定大小 统计分析、数据挖掘与商业智能应用研究小组统计分析、数据挖掘与商业智能应用研究小组Clementine11.0中的应用中的应用 先验概率先验概率(priors)选项选项在根本不知道预测值前对每个可能的目标域值所做的概率估计。Based on training

    11、 data 先验概率基于各类在训练集中的相对次数Equal for all classes各类的先验概率指定为1/k,k为目标类数Custom自定义,要求:所有类的先验概率总和为1。 统计分析、数据挖掘与商业智能应用研究小组统计分析、数据挖掘与商业智能应用研究小组Clementine11.0中的应用中的应用 QUEST节点的成本节点的成本(cost)选项选项 错误归类矩阵显示预测类和实际类每一个可能组合的损失,所有预设为1 选择Use misclassification costs可以自定义损失值统计分析、数据挖掘与商业智能应用研究小组统计分析、数据挖掘与商业智能应用研究小组Clementin

    12、e11.0中的应用中的应用 执行执行QUEST节点节点统计分析、数据挖掘与商业智能应用研究小组统计分析、数据挖掘与商业智能应用研究小组Clementine11.0中的应用中的应用 决策树的生长和修剪决策树的生长和修剪 显示标签值生长并修剪树统计分析、数据挖掘与商业智能应用研究小组统计分析、数据挖掘与商业智能应用研究小组Clementine11.0中的应用中的应用 通过统计检验确定的分支变量通过统计检验确定的分支变量 根据Adj.Prob确定最佳分支变量,概率值越小,则根据该分支变量所确定两个类的异质性越强,分支越有效统计分析、数据挖掘与商业智能应用研究小组统计分析、数据挖掘与商业智能应用研究小

    13、组Clementine11.0中的应用中的应用 确定的最佳分支变量为年龄 节点2在年龄大于44.142的人群中,确定一个人订阅的概率已经达到67.143% 统计分析、数据挖掘与商业智能应用研究小组统计分析、数据挖掘与商业智能应用研究小组Clementine11.0中的应用中的应用统计分析、数据挖掘与商业智能应用研究小组统计分析、数据挖掘与商业智能应用研究小组Clementine11.0中的应用中的应用 Gains 选项卡选项卡 选择Target category=1.0索引值大于100%的节点所确定的人群接受的概率明显大于随机选择的人群。统计分析、数据挖掘与商业智能应用研究小组统计分析、数据挖

    14、掘与商业智能应用研究小组Clementine11.0中的应用中的应用 Chart 横坐标通常为分位点纵 坐标是累计Lift值 理想的Lift图应在较高的 累计Lift上保持较长一段, 然后迅速下降到1总样本数总命中数分位样本数分位累计命中数/统计分析、数据挖掘与商业智能应用研究小组统计分析、数据挖掘与商业智能应用研究小组Clementine11.0中的应用中的应用 生成模型生成模型(Generate Model)根据建立的决策树可以生成或输出决策结果统计分析、数据挖掘与商业智能应用研究小组统计分析、数据挖掘与商业智能应用研究小组Clementine11.0中的应用中的应用 风险(风险(risk

    15、)选项)选项 在某些情况下,特定类型的错误比其他类错误所引起的损失更大。例如,把高风险信用卡申请者归入低风险信用类(一种错误)比把低风险信用卡申请者归入高风险类(另一种错误)损失要大。错误归类代价提供用户在识别不同的预测误差的相对重要性。统计分析、数据挖掘与商业智能应用研究小组统计分析、数据挖掘与商业智能应用研究小组Clementine11.0中的应用中的应用统计分析、数据挖掘与商业智能应用研究小组统计分析、数据挖掘与商业智能应用研究小组Clementine11.0中的应用中的应用 生成的模型显示在流编辑窗口,与Type节点连接,然后双击就可以查看该模型统计分析、数据挖掘与商业智能应用研究小组

    16、统计分析、数据挖掘与商业智能应用研究小组Clementine11.0中的应用中的应用总体显示决策树模型统计分析、数据挖掘与商业智能应用研究小组统计分析、数据挖掘与商业智能应用研究小组Clementine11.0中的应用中的应用树深为2目标变量输入变量统计分析、数据挖掘与商业智能应用研究小组统计分析、数据挖掘与商业智能应用研究小组Clementine11.0中的应用中的应用 连接连接Table到生成模型看决策结果到生成模型看决策结果$R-NEWSCHAN的值=1表示为订阅的客户;其值为0,表明该客户不会订阅。 统计分析、数据挖掘与商业智能应用研究小组统计分析、数据挖掘与商业智能应用研究小组 谢谢!谢谢!

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:决策树模型QUEST--谢邦昌教授.课件.ppt
    链接地址:https://www.163wenku.com/p-2888978.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库