高三数学数学学科核心素养与考试说明二轮理数(教)专题一.docx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《高三数学数学学科核心素养与考试说明二轮理数(教)专题一.docx》由用户(欢乐马)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数学 学科 核心 素养 考试 说明 二轮 专题 下载 _二轮专题_高考专区_数学_高中
- 资源描述:
-
1、专题一数学学科核心素养与考试说明数学学科核心素养一、数学学科核心素养学科核心素养是育人价值的集中体现,是学生通过学科学习而逐步形成的正确价值观念、必备品格和关键能力数学学科核心素养是数学课程目标的集中体现,是具有数学基本特征的思维品质、关键能力以及情感、态度与价值观的综合体现,是在数学学习和应用的过程中逐步形成和发展的数学学科核心素养包括:数学抽象、逻辑推理、数学建模、直观想象、数学运算和数据分析这些数学学科核心素养既相对独立、又相互交融,是一个有机的整体1数学抽象数学抽象是指通过对数量关系与空间形式的抽象,得到数学研究对象的素养主要包括:从数量与数量关系、图形与图形关系中抽象出数学概念及概念
2、之间的关系,从事物的具体背景中抽象出一般规律和结构,并用数学语言予以表征数学抽象是数学的基本思想,是形成理性思维的重要基础,反映了数学的本质特征,贯穿在数学产生、发展、应用的过程中数学抽象使得数学成为高度概括、表达准确、结论一般、有序多级的系统数学抽象主要表现为:获得数学概念和规则,提出数学命题和模型,形成数学方法与思想,认识数学结构与体系通过高中数学课程的学习,学生能在情境中抽象出数学概念、命题、方法和体系,积累从具体到抽象的活动经验;养成在日常生活和实践中一般性思考问题的习惯,把握事物的本质,以简驭繁;运用数学抽象的思维方式思考并解决问题2逻辑推理逻辑推理是指从一些事实和命题出发,依据规则
3、推出其他命题的素养主要包括两类:一类是从特殊到一般的推理,推理形式主要有归纳、类比,一类是从一般到特殊的推理,推理形式主要有演绎逻辑推理是得到数学结论、构建数学体系的重要方式,是数学严谨性的基本保证,是人们在数学活动中进行交流的基本思维品质逻辑推理主要表现为:掌握推理基本形式和规则,发现问题和提出命题,探索和表述论证过程,理解命题体系,有逻辑地表达与交流通过高中数学课程的学习,学生能掌握逻辑推理的基本形式,学会有逻辑地思考问题;能够在比较复杂的情境中把握事物之间的关联,把握事物发展的脉络;形成重论据、有条理、合乎逻辑的思维品质和理性精神,增强交流能力3数学建模数学建模是对现实问题进行数学抽象,
4、用数学语言表达问题、用数学方法构建模型解决问题的素养数学建模过程主要包括:在实际情境中从数学的视角发现问题、提出问题,分析问题、建立模型,确定参数、计算求解,检验结果、改进模型,最终解决实际问题数学模型搭建了数学与外部世界联系的桥梁,是数学应用的重要形式数学建模是应用数学解决实际问题的基本手段,也是推动数学发展的动力数学建模主要表现为:发现和提出问题,建立和求解模型,检验和完善模型,分析和解决问题通过高中数学课程的学习,学生能有意识地用数学语言表达现实世界,发现和提出问题,感悟数学与现实之间的关联;学会用数学模型解决实际问题,积累数学实践的经验;认识数学模型在科学、社会、工程技术诸多领域的作用
5、,提升实践能力,增强创新意识和科学精神4直观想象直观想象是指借助几何直观和空间想象感知事物的形态与变化,利用空间形式特别是图形,理解和解决数学问题的素养主要包括:借助空间形式认识事物的位置关系、形态变化与运动规律;利用图形描述、分析数学问题;建立形与数的联系,构建数学问题的直观模型,探索解决问题的思路直观想象是发现和提出问题、分析和解决问题的重要手段,是探索和形成论证思路、进行数学推理、构建抽象结构的思维基础直观想象主要表现为:建立形与数的联系,利用几何图形描述问题,借助几何直观理解问题,运用空间想象认识事物通过高中数学课程的学习,学生能提升数形结合的能力,发展几何直观和空间想象能力;增强运用
6、几何直观和空间想象思考问题的意识;形成数学直观,在具体的情境中感悟事物的本质5数学运算数学运算是指在明晰运算对象的基础上,依据运算法则解决数学问题的素养主要包括:理解运算对象,掌握运算法则,探究运算思路,选择运算方法,设计运算程序,求得运算结果等数学运算是解决数学问题的基本手段数学运算是演绎推理,是计算机解决问题的基础数学运算主要表现为:理解运算对象,掌握运算法则,探究运算思路,求得运算结果通过高中数学课程的学习,学生能进一步发展数学运算能力;有效借助运算方法解决实际问题;通过运算促进数学思维发展,形成规范化思考问题的品质,养成一丝不苟、严谨求实的科学精神6数据分析数据分析是指针对研究对象获取
7、数据,运用数学方法对数据进行整理、分析和推断,形成关于研究对象知识的素养数据分析过程主要包括:收集数据,整理数据,提取信息,构建模型,进行推断,获得结论数据分析是研究随机现象的重要数学技术,是大数据时代数学应用的主要方法,也是“互联网”相关领域的主要数学方法,数据分析已经深入到科学、技术、工程和现代社会生活的各个方面数据分析主要表现为:收集和整理数据,理解和处理数据,获得和解释结论,概括和形成知识通过高中数学课程的学习,学生能提升获取有价值信息并进行定量分析的意识和能力;适应数字化学习的需要,增强基于数据表达现实问题的意识,形成通过数据认识事物的思维品质,积累依托数据探索事物本质、关联和规律的
8、活动经验二、学业质量水平数学学业质量水平是六个数学学科核心素养水平的综合表现每一个数学学科核心素养划分为三个水平(详述参见附录),每一个水平是通过数学学科核心素养的具体表现和体现数学学科核心素养的几个方面进行表述的体现学科核心素养的四个方面如下:情境与问题情境主要是指现实情境、数学情境、科学情境问题是指在情境中提出的数学问题;知识与技能主要是指能够帮助学生形成相应数学学科核心素养的知识与技能;思维与表达主要是指数学活动过程中反映的思维品质、表述的严谨性和准确性;交流与反思主要是指能够用数学语言直观地解释和交流数学的概念、结论、应用和思想方法,并能进行评价、总结与拓展附录数学学科核心素养的水平划
9、分水平素养数学抽象水平一能够在熟悉的情境中直接抽象出数学概念和规则,能够在特例的基础上归纳并形成简单的数学命题,能够模仿学过的数学方法解决简单问题能够解释数学概念和规则的含义,了解数学命题的条件与结论,能够在熟悉的情境中抽象出数学问题能够了解用数学语言表达的推理和论证;能够在解决相似的问题中感悟数学的通性通法,体会其中的数学思想在交流的过程中,结合实际情境解释相关的抽象概念.水平二能够在关联的情境中抽象出一般的数学概念和规则,能够将已知数学命题推广到更一般的情形,能够在新的情境中选择和运用数学方法解决问题能够用恰当的例子解释抽象的数学概念和规则;理解数学命题的条件与结论;能够理解和构建相关数学
10、知识之间的联系能够理解用数学语言表达的概念、规则、推理和论证;能够提炼出解决一类问题的数学方法,理解其中的数学思想在交流的过程中,能够用一般的概念解释具体现象.水平三能够在综合的情境中抽象出数学问题,并用恰当的数学语言予以表达;能够在得到的数学结论基础上形成新命题;能够针对具体问题运用或创造数学方法解决问题能够通过数学对象、运算或关系理解数学的抽象结构,能够理解数学结论的一般性,能够感悟高度概括、有序多级的数学知识体系在现实问题中,能够把握研究对象的数学特征,并用准确的数学语言予以表达;能够感悟通性通法的数学原理和其中蕴含的数学思想在交流的过程中,能够用数学原理解释自然现象和社会现象.水平素养
11、逻辑推理水平一能够在熟悉的情境中,用归纳或类比的方法,发现数量或图形的性质、数量关系或图形关系能够在熟悉的数学内容中,识别归纳推理、类比推理、演绎推理;知道通过归纳推理、类比推理得到的结论是或然成立的,通过演绎推理得到的结论是必然成立的能够通过熟悉的例子理解归纳推理、类比推理和演绎推理的基本形式了解熟悉的数学命题的条件与结论之间的逻辑关系;能够证明简单的数学命题并有条理地表述论证过程能够了解熟悉的概念、定理之间的逻辑关系能够在交流过程中,明确所讨论问题的内涵,有条理地表达观点.水平二能够在关联的情境中,发现并提出数学问题,用数学语言予以表达;能够理解归纳、类比是发现和提出数学命题的重要途径能够
12、对与学过的知识有关联的数学命题,通过对条件与结果的分析,探索论证的思路,选择合适的论证方法予以证明,并能用准确的数学语言表述论证过程;能够通过举反例说明某些数学结论不成立能够理解相关概念、命题、定理之间的逻辑关系,初步建立网状的知识结构能够在交流的过程中,始终围绕主题,观点明确,论述有理有据.水平三能够在综合的情境中,用数学的眼光找到合适的研究对象,提出有意义的数学问题能够掌握常用逻辑推理方法的规则,理解其中所蕴含的思想对于新的数学问题,能够提出不同的假设前提,推断结论,形成数学命题对于较复杂的数学问题,通过构建过渡性命题,探索论证的途径,解决问题,并会用严谨的数学语言表达论证过程能够理解建构
13、数学体系的公理化思想能够合理地运用数学语言和思维进行跨学科的表达与交流.水平素养数学建模水平一了解熟悉的数学模型的实际背景及其数学描述,了解数学模型中的参数、结论的实际含义知道数学建模的过程包括:提出问题、建立模型、求解模型、检验结果、完善模型能够在熟悉的实际情境中,模仿学过的数学建模过程解决问题对于学过的数学模型,能够举例说明建模的意义,体会其蕴含的数学思想;感悟数学表达对数学建模的重要性在交流的过程中,能够借助或引用已有数学建模的结果说明问题.水平素养数学建模水平二能够在熟悉的情境中,发现问题并转化为数学问题,知道数学问题的价值与作用能够选择合适的数学模型表达所要解决的数学问题;理解模型中
14、参数的意义,知道如何确定参数,建立模型,求解模型;能够根据问题的实际意义检验结果,完善模型,解决问题能够在关联的情境中,经历数学建模的过程,理解数学建模的意义;能够运用数学语言,表述数学建模过程中的问题以及解决问题的过程和结果,形成研究报告,展示研究成果在交流的过程中,能够用模型的思想说明问题.水平三能够在综合情境中,运用数学思维进行分析,发现情境中的数学关系,提出数学问题能够运用数学建模的一般方法和相关知识,创造性地建立数学模型,解决问题能够理解数学建模的意义和作用;能够运用数学语言,清晰、准确地表达数学建模的过程和结果在交流的过程中,能够通过数学建模的结论和思想阐释科学规律和社会现象.水平
15、素养直观想象水平一能够在熟悉的情境中,建立实物的几何图形,能够建立简单图形与实物之间的联系;体会图形与图形、图形与数量的关系能够在熟悉的数学情境中,借助图形的性质和变换(平移、对称、旋转)发现数学规律;能够描述简单图形的位置关系和度量关系及其特有性质能够通过图形直观认识数学问题;能够用图形描述和表达熟悉的数学问题、启迪解决这些问题的思路,体会数形结合能够在日常生活中利用图形直观进行交流.水平二能够在关联情境中,想象并构建相应的几何图形;借助图形提出数学问题,发现图形与图形、图形与数量的关系,探索图形的运动规律能够掌握研究图形与图形、图形与数量之间关系的基本方法,能够借助图形性质探索数学规律,解
16、决实际问题或数学问题能够通过直观想象提出数学问题;能够用图形探索解决问题的思路;能够形成数形结合的思想,体会几何直观的作用和意义在交流的过程中,能够利用直观想象探讨数学问题.水平三能够在综合情境中,借助图形,通过直观想象提出数学问题能够综合利用图形与图形、图形与数量的关系,理解数学各分支之间的联系;能够借助直观想象建立数学与其他学科的联系,并形成理论体系的直观模型能够通过想象对复杂的数学问题进行直观表达,反映数学问题的本质,形成解决问题的思路在交流的过程中,能够利用直观想象探讨问题的本质及其与数学的联系.水平素养数学运算水平一能够在熟悉的数学情境中了解运算对象,提出运算问题能够了解运算法则及其
17、适用范围,正确进行运算;能够在熟悉的数学情境中,根据问题的特征建立合适的运算思路,解决问题在运算过程中,能够体会运算法则的意义和作用,能够运用运算验证简单的数学结论在交流的过程中,能够用运算的结果说明问题.水平二能够在关联的情境中确定运算对象,提出运算问题能够针对运算问题,合理选择运算方法、设计运算程序,解决问题能够理解运算是一种演绎推理;能够在综合利用运算方法解决问题的过程中,体会程序化思想的意义和作用在交流的过程中,能够借助运算探讨问题.水平三在综合情境中,能把问题转化为运算问题,确定运算对象和运算法则,明确运算方向能够对运算问题,构造运算程序,解决问题能够用程序化的思想理解与表达问题,理
18、解程序化与计算机解决问题的联系在交流的过程中,能够用程式化思想理解和解释问题.水平素养数据分析水平一能够在熟悉的情境中了解随机现象及简单的统计或概率问题能够对熟悉的概率问题,选择合适的概率模型,解决问题;能够对熟悉的统计问题,选择合适的抽样方法收集数据,掌握描述、刻画、分析数据的基本统计方法,解决问题能够结合熟悉的实例,体会概率是对随机现象发生可能性大小的度量,可以通过定义的方法得到,也可以通过统计的方法进行估计;能够用统计和概率的语言表达简单的随机现象在交流的过程中,能够用统计图表和简单概率模型解释熟悉的随机现象.水平二能够在关联情境中,识别随机现象,知道随机现象与随机变量之间的关联,发现并
19、提出统计或概率问题能够针对具体问题,选择离散型随机变量或连续型随机变量刻画随机现象,理解抽样方法的统计意义,能够运用适当的统计或概率模型解决问题能够在运用统计方法解决问题的过程中,感悟归纳推理的思想,理解统计结论的意义;能够用统计或概率的思维来分析随机现象,用统计或概率模型表达随机现象的统计规律在交流的过程中,能够用数据呈现的规律解释随机现象.水平三能够在综合情境中,发现并提出随机问题能够针对不同的问题,综合或创造性地运用统计概率知识,构造相应的统计或概率模型,解决问题;能够分析随机现象的本质,发现随机现象的统计规律,形成新的知识能够理解数据分析在大数据时代的重要性能够理解数据蕴含着信息,可以
20、通过对信息的加工,得到数据所提供的知识和规律,并用统计或概率的语言予以表达在交流的过程中,能够辨明随机现象,并运用恰当的语言进行表述.三、学业质量水平与考试评价的关系数学学业质量水平一是高中毕业应当达到的要求,也是高中毕业的数学学业水平考试的命题依据;数学学业质量水平二是高考的要求,也是数学高考的命题依据;数学学业质量水平三是基于必修、选择性必修和选修课程的某些内容对数学学科核心素养的达成提出的要求,可以作为大学自主招生的参考数学学科考试说明数学学科考试说明包括. 考试形式与要求; .考试目标与要求;.考试范围与要求;.题型示例四个部分. 其中考试范围与要求本部分包括必考内容和选考内容两部分必
展开阅读全文