高考数学真题专项训练题集 (概率统计).DOCX
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《高考数学真题专项训练题集 (概率统计).DOCX》由用户(欢乐马)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高考数学真题专项训练题集 概率统计 高考 数学 专项 训练 概率 统计 下载 _其它资料_高考专区_数学_高中
- 资源描述:
-
1、课标文数4.I12011福建卷 某校选修乒乓球课程的学生中,高一年级有30名,高二年级有40名,现用分层抽样的方法在这70名学生中抽取一个样本,已知在高一年级的学生中抽取了6名,则在高二年级的学生中应抽取的人数为()A6 B8 C10 D12课标文数4.I12011福建卷 B【解析】 设在高二年级的学生中应抽取的人数为x人,则,解得x8,故选B.课标文数11.I12011湖北卷 某市有大型超市200家、中型超市400家、小型超市1400家,为掌握各类超市的营业情况,现按分层抽样方法抽取一个容量为100的样本,应抽取中型超市_家课标文数11.I12011湖北卷 20【解析】 由题意,样本容量为2
2、0040014002000, 抽样比例为,所以中型超市应抽40020家课标文数13.I12011山东卷 某高校甲、乙、丙、丁四个专业分别有150、150、400、300名学生,为了解学生的就业倾向,用分层抽样的方法从该校这四个专业共抽取40名学生进行调查,应在丙专业抽取的学生人数为_课标文数13.I12011山东卷 16【解析】 4016.课标理数9.I12011天津卷 一支田径队有男运动员48人,女运动员36人,若用分层抽样的方法从该队的全体运动员中抽取一个容量为21的样本,则抽取男运动员的人数为_课标理数9.I12011天津卷 12【解析】 设抽取男运动员人数为n,则,解之得n12.课标理
3、数17.I2,K6,K82011北京卷 以下茎叶图记录了甲、乙两组各四名同学的植树棵数,乙组记录中有一个数据模糊,无法确认,在图中以X表示.甲组乙组990X891110图18(1)如果X8,求乙组同学植树棵数的平均数和方差;(2)如果X9,分别从甲,乙两组中随机选取一名同学,求这两名同学的植树总棵数Y的分布列和数学期望(注:方差s2(x1x)2(x2x)2(xnx)2,其中x为x1,x2,xn的平均数)课标理数17.I2,K6,K82011北京卷 【解答】 (1)当X8时,由茎叶图可知,乙组同学的植树棵数是:8,8,9,10.所以平均数为x;方差为s2.(2)当X9时,由茎叶图可知,甲组同学的
4、植树棵树是:9,9,11,11;乙组同学的植树棵数是:9,8,9,10.分别从甲、乙两组中随机选取1名同学,共有4416种可能的结果,这两名同学植树总棵数Y的可能取值为17,18,19,20,21.事件“Y17”等价于“甲组选出的同学植树9棵,乙组选出的同学植树8棵”,所以该事件有2种可能的结果,因此P(Y17),同理可得P(Y18);P(Y19);P(Y20);P(Y21).所以随机变量Y的分布列为:Y1718192021PEY17P(Y17)18P(Y18)19P(Y19)20P(Y20)21P(Y21)171819202119.课标文数16.I2,K22011北京卷 以下茎叶图记录了甲、
5、乙两组各四名同学的植树棵数,乙组记录中有一个数据模糊,无法确认,在图中以X表示(1)如果X8,求乙组同学植树棵数的平均数和方差;(2)如果X9,分别从甲、乙两组中随机选取一名同学,求这两名同学的植树总棵数为19的概率(注:方差s2(x1x)2(x2x)2(xnx)2,其中x为x1,x2,xn的平均数)课标文数16.I2,K22011北京卷 【解答】 (1)当X8时,由茎叶图可知,乙组同学的植树棵数是:8,8,9,10,所以平均数为x;方差为s2.(2)记甲组四名同学分别为A1,A2,A3,A4,他们植树的棵数依次为9,9,11,11;乙组四名同学分别为B1,B2,B3,B4,他们植树的棵数依次
6、为9,8,9,10.分别从甲、乙两组中随机选取一名同学,所有可能的结果有16个,它们是:(A1,B1),(A1,B2),(A1,B3),(A1,B4),(A2,B1),(A2,B2),(A2,B3),(A2,B4),(A3,B1),(A3,B2),(A3,B3),(A3,B4),(A4,B1),(A4,B2),(A4,B3),(A4,B4)用C表示:“选出的两名同学的植树总棵数为19”这一事件,则C中的结果有4个,它们是:(A1,B4),(A2,B4),(A3,B2),(A4,B2),故所求概率为P(C).课标文数19.I2,K12011福建卷 某日用品按行业质量标准分成五个等级,等级系数X依
7、次为1,2,3,4,5.现从一批该日用品中随机抽取20件,对其等级系数进行统计分析,得到频率分布表如下:X12345fa0.20.45bc(1)若所抽取的20件日用品中,等级系数为4的恰有3件,等级系数为5的恰有2件,求a,b,c的值;(2)在(1)的条件下,将等级系数为4的3件日用品记为x1,x2,x3,等级系数为5的2件日用品记为y1,y2,现从x1,x2,x3,y1,y2这5件日用品中任取两件(假定每件日用品被取出的可能性相同),写出所有可能的结果,并求这两件日用品的等级系数恰好相等的概率课标文数19.I2、K12011福建卷 【解答】 (1)由频率分布表得a0.20.45bc1,即ab
8、c0.35.因为抽取的20件日用品中,等级系数为4的恰有3件,所以b0.15.等级系数为5的恰有2件,所以c0.1.从而a0.35bc0.1.所以a0.1,b0.15,c0.1.(2)从日用品x1,x2,x3,y1,y2中任取两件,所有可能的结果为:x1,x2,x1,x3,x1,y1,x1,y2,x2,x3,x2,y1,x2,y2,x3,y1,x3,y2,y1,y2设事件A表示“从日用品x1,x2,x3,y1,y2中任取两件,其等级系数相等”,则A包含的基本事件为:x1,x2,x1,x3,x2,x3,y1,y2,共4个又基本事件的总数为10,故所求的概率P(A)0.4.课标文数17.I2,K2
9、2011广东卷 在某次测验中,有6位同学的平均成绩为75分用xn表示编号为n(n1,2,6)的同学所得成绩,且前5位同学的成绩如下:编号n12345成绩xn7076727072(1)求第6位同学的成绩x6,及这6位同学成绩的标准差s;(2)从前5位同学中,随机地选2位同学,求恰有1位同学成绩在区间(68,75)中的概率课标文数17.I2,K22011广东卷 【解答】 (1)xxn75,x66xxn675707672707290,s2 (xnx)2(5212325232152)49,s7.(2)从5位同学中随机选取2位同学,共有如下10种不同的取法:1,2,1,3,1,4,1,5,2,3,2,4
10、,2,5,3,4,3,5,4,5选出的2位同学中,恰有1位同学的成绩位于(68,75)的取法共有如下4种:1,2,2,3,2,4,2,5,故所求概率为.课标文数5.I22011湖北卷 有一个容量为200的样本,其频率分布直方图如图11所示,根据样本的频率分布直方图估计,样本数据落在区间10,12)内的频数为()图11A18 B36 C54 D72课标文数5.I22011湖北卷 B【解析】 因为落在2,10内的频率为20.82,所以落在10,12)内的频率为10.820.18,故落在10,12)内的频数为2000.1836.课标文数18.I2,K42011湖南卷 某河流上的一座水力发电站,每年六
11、月份的发电量Y(单位:万千瓦时)与该河上游在六月份的降雨量X(单位:毫米)有关据统计,当X70时,Y460;X每增加10,Y增加5.已知近20年X的值为:140,110,160,70,200,160,140,160,220,200,110,160,160,200,140,110,160,220,140,160.(1)完成如下的频率分布表:近20年六月份降雨量频率分布表降雨量70110140160200220频率(2)假定今年六月份的降雨量与近20年六月份降雨量的分布规律相同,并将频率视为概率,求今年六月份该水力发电站的发电量低于490(万千瓦时)或超过530(万千瓦时)的概率课标文数18.I2
12、,K42011湖南卷 【解答】 (1)在所给数据中,降雨量为110毫米的有3个,为160毫米的有7个,为200毫米的有3个故近20年六月份降雨量频率分布表为降雨量70110140160200220频率(2)P(“发电量低于490万千瓦时或超过530万千瓦时”)P(Y530)P(X210)P(X70)P(X110)P(X220).故今年六月份该水力发电站的发电量低于490(万千瓦时)或超过530(万千瓦时)的概率为.课标文数7.I22011江西卷 为了普及环保知识,增强环保意识,某大学随机抽取30名学生参加环保知识测试,得分(十分制)如图11所示,假设得分值的中位数为me,众数为m0,平均值为x
13、,则()图11Amem0x Bmem0x Cmem0x Dm0mex课标文数7.I22011江西卷 D【解析】 由频数分布条形图可知,30名学生的得分依次为2个3,3个4,10个5,6个6,3个7,2个8,2个9,2个10.中位数为第15,16个数(为5,6)的平均数,即me5.5,5出现次数最多,故m05,x5.97.于是得m0mex.故选D.课标理数19.I2,K62011课标全国卷 某种产品的质量以其质量指标值衡量,质量指标值越大表明质量越好,且质量指标值大于或等于102的产品为优质品现用两种新配方(分别称为A配方和B配方)做试验,各生产了100件这种产品,并测量了每件产品的质量指标值,
14、得到下面试验结果:A配方的频数分布表指标值分组90,94)94,98)98,102)102,106)106,110频数82042228B配方的频数分布表指标值分组90,94)94,98)98,102)102,106)106,110频数412423210(1)分别估计用A配方,B配方生产的产品的优质品率;(2)已知用B配方生产的一件产品的利润y(单位:元)与其质量指标值t的关系式为y从用B配方生产的产品中任取一件,其利润记为X(单位:元),求X的分布列及数学期望(以试验结果中质量指标值落入各组的频率作为一件产品的质量指标值落入相应组的概率)课标理数19.I2,K62011课标全国卷 【解答】 (
15、1)由试验结果知,用A配方生产的产品中优质品的频率为0.3,所以用A配方生产的产品的优质品率的估计值为0.3.由试验结果知,用B配方生产的产品中优质品的频率为0.42,所以用B配方生产的产品的优质品率的估计值为0.42.(2)用B配方生产的100件产品中,其质量指标值落入区间90,94),94,102),102,110的频率分别为0.04,0.54,0.42,因此P(X2)0.04,P(X2)0.54,P(X4)0.42,即X的分布列为X224P0.040.540.42X的数学期望EX20.0420.5440.422.68.课标理数20.H2,H92011课标全国卷 在平面直角坐标系xOy中,
16、已知点A(0,1),B点在直线y3上,M点满足,M点的轨迹为曲线C.(1)求C的方程;(2)P为C上的动点,l为C在P点处的切线,求O点到l距离的最小值课标文数19.K2,I22011辽宁卷 某农场计划种植某种新作物,为此对这种作物的两个品种(分别称为品种甲和品种乙)进行田间试验选取两大块地,每大块地分成n小块地,在总共2n小块地中,随机选n小块地种植品种甲,另外n小块地种植品种乙(1)假设n2,求第一大块地都种植品种甲的概率;(2)试验时每大块地分成8小块,即n8,试验结束后得到品种甲和品种乙在各小块地上的每公顷产量(单位:kg/hm2)如下表:品种甲40339739040438840041
17、2406品种乙419403412418408423400413分别求品种甲和品种乙的每公顷产量的样本平均数和样本方差;根据试验结果,你认为应该种植哪一品种?附:样本数据x1,x2,xn的样本方差s2(x1x)2(x2x)2(xnx)2,其中x为样本平均数课标文数19.K2,I22011辽宁卷 【解答】 (1)设第一大块地中的两小块地编号为1,2,第二大块地中的两小块地编号为3,4,令事件A“第一大块地都种品种甲”从4小块地中任选2小块地种植品种甲的基本事件共6个:(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)而事件A包含1个基本事件:(1,2)所以P(A).(2)品种甲
18、的每公顷产量的样本平均数和样本方差分别为:x甲(403397390404388400412406)400,s32(3)2(10)242(12)2021226257.25.品种乙的每公顷产量的样本平均数和样本方差分别为:x乙(419403412418408423400413)412,S72(9)20262(4)2112(12)21256.由以上结果可以看出,品种乙的样本平均数大于品种甲的样本平均数,且两品种的样本方差差异不大,故应该选择种植品种乙课标文数19.I22011课标全国卷 某种产品的质量以其质量指标值衡量,质量指标值越大表明质量越好,且质量指标值大于或等于102的产品为优质品现用两种新
展开阅读全文