红外光谱原理及分析课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《红外光谱原理及分析课件.ppt》由用户(三亚风情)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 红外 光谱 原理 分析 课件
- 资源描述:
-
1、2022-6-6有机波谱解析2015-121 1)红外吸收只有振)红外吸收只有振- -转跃迁,能量低;转跃迁,能量低;2 2)应用范围广:除单原子分子及单核分子外,几乎所有有机物)应用范围广:除单原子分子及单核分子外,几乎所有有机物均有红外吸收;均有红外吸收;3 3)红外光谱特征性强)红外光谱特征性强“分子指纹光谱分子指纹光谱”。分子结构更为精细。分子结构更为精细的表征,通过的表征,通过IRIR谱的波数位置、波峰数目及强度确定分子基谱的波数位置、波峰数目及强度确定分子基团、分子结构;团、分子结构;4 4)固、液、气态样均可用,且用量少、不破坏样品;)固、液、气态样均可用,且用量少、不破坏样品;
2、5 5)分析速度快,快速测量时可达到)分析速度快,快速测量时可达到6060张谱张谱/ /秒秒6 6)光谱数据积累较多。)光谱数据积累较多。1.2. 红外光谱法特点红外光谱法特点一、概述1.1.1.1.红外光谱的发展红外光谱的发展19471947年,第一代双光束红外光谱,棱镜年,第一代双光束红外光谱,棱镜2020世纪世纪6060年代,第二代,光栅年代,第二代,光栅7070年代后期,第三代,干涉型傅里叶变换红外光谱仪年代后期,第三代,干涉型傅里叶变换红外光谱仪近年来,第四代激光红外分光光度计。近年来,第四代激光红外分光光度计。2022-6-6有机波谱解析2015-131.3. 红外光区划分红外光区
3、划分红外光谱红外光谱(0.751000 m)远红外远红外(转动区转动区)(25-1000 m)中红外中红外(振动区振动区)(2.525 m)近红外近红外(泛频)泛频)(0.752.5 m)绝大多数基团的基频振动吸收分子振动转动分子振动转动分子转动分子转动价键转动、晶格转动分区及波长范围分区及波长范围 跃迁类型跃迁类型用于研究单键的倍频、组频吸收,(如0-H,N-H,C-H键。)这个区域的吸收很弱2022-6-6有机波谱解析2015-14电子基态电子激发态电子跃迁振动跃迁转动跃迁2341平动能平动能E Et t: 能级差小, 近似地看成能量变化是连续的连续的转动能转动能E Er r: 能级差(3
4、.510-3 510-2eV)振动能振动能E E: 能级差(510-2 1eV)电子能电子能E Ee e: 能级差(1 20eV)能量变化 -量子化2.1.2.1.化学建的振动化学建的振动分子中基团的振动和转动能级跃迁产生:振振- -转光谱转光谱二二. .化学键的振动化学键的振动2022-6-6有机波谱解析2015-15相对强度1 1用频率连续变化的单色光用频率连续变化的单色光照射照射选择性吸收与能级选择性吸收与能级跃迁相对应的跃迁相对应的特定频率的光特定频率的光光谱光谱仪器记录仪器记录2. 吸收光谱吸收光谱透过透过吸收吸收2022-6-6有机波谱解析2015-162.2.振动能级跃迁振动能级
5、跃迁 红外光谱产生的条件红外光谱产生的条件 条件一:条件一:辐射光子的能量应与振动跃迁所需能量相等。辐射光子的能量应与振动跃迁所需能量相等。 根据量子力学原理,分子振动能量根据量子力学原理,分子振动能量E Ev v 是量子化的,是量子化的,即即 E E V V = =(V+1/2V+1/2)h h -分子振动频率, V-振动量子数,值取 0,1,2, 只有当只有当 E Ea a= = E EV V 时,才可能发生振转跃迁。时,才可能发生振转跃迁。2022-6-6有机波谱解析2015-17 红外活性振动:当分子振动时,只有偶极矩发生变化的振红外活性振动:当分子振动时,只有偶极矩发生变化的振动才产
6、生红外吸收,这种振动称为红外活性振动。动才产生红外吸收,这种振动称为红外活性振动。条件二:条件二:辐射与物质之间必须有耦合作用辐射与物质之间必须有耦合作用 qr物质吸收辐射实质上是外界辐射转移它的能量到分子中去,而这种能量的转移是通过偶极矩的变化来实现的。正、负电荷中心间的距离r和电荷中心所带电量q的乘积,叫做偶极矩=rq。它是一个矢量,方向规定为从负电荷中心指向正电荷中心。偶极矩的单位是D(德拜)。 偶极矩变化越大,活性越强,吸收强度越大。偶极矩变化越大,活性越强,吸收强度越大。 某些极性键如某些极性键如COCO2 2在振动时可以产生瞬间偶极矩的变化,也在振动时可以产生瞬间偶极矩的变化,也会
7、产生红外吸收。会产生红外吸收。2022-6-6有机波谱解析2015-182022-6-6有机波谱解析2015-19CHHCHH剪式振动剪式振动平面摇摆平面摇摆CHH+CHH+非平面摇摆非平面摇摆扭曲振动扭曲振动CHH反对称反对称 伸缩振动伸缩振动(as)对称对称 伸缩振动伸缩振动(s)伸缩振动伸缩振动面内弯曲面内弯曲(面内面内)面外弯曲面外弯曲(面外面外)弯曲振动弯曲振动振动类型振动类型高频区高频区低频区低频区2.3 2.3 分子的振动类型分子的振动类型亚甲基的振动形式亚甲基的振动形式键角不变键角不变,键长改变键长改变键长不变键长不变,键角改变键角改变CHH2022-6-6有机波谱解析2015
8、-110多原子基团有更多的振动形式,可以出现一个以上基频振多原子基团有更多的振动形式,可以出现一个以上基频振动吸收带动吸收带, ,吸收带的数目与分子的自由度有关。吸收带的数目与分子的自由度有关。自由度的数目等于分子中所有原子在空间的位置所需要坐自由度的数目等于分子中所有原子在空间的位置所需要坐标的总数。标的总数。 3 3N = N = 平动平动 + + 转动转动 + + 振动振动 振动自由度振动自由度 = 3 = 3N N 6 6 非线性分子非线性分子 振动自由度振动自由度 = 3N = 3N 5 - 5 - 线性分子线性分子 双原子分子双原子分子 N = 2N = 2,振动自由度振动自由度
9、= 3 = 32-5 = 12-5 = 1 三原子分子三原子分子 N = 3N = 3,振动自由度振动自由度 = 3 = 33-6 = 3 3-6 = 3 非线性非线性 N = 3N = 3,振动自由度振动自由度 = 3 = 33-5 = 4 3-5 = 4 线性线性分子振动自由度数目越大,红外光谱中峰的数目越多。分子振动自由度数目越大,红外光谱中峰的数目越多。2.4.振动自由度振动自由度2022-6-6有机波谱解析2015-1112022-6-6有机波谱解析2015-1122022-6-6有机波谱解析2015-1132.5 2.5 分子振动方程式分子振动方程式m1m2K双原子分子伸缩振动示意
10、图 双原子分子的振动方式双原子分子的振动方式: : 伸缩振动伸缩振动. . 如果把双原子分子粗略地如果把双原子分子粗略地看成弹簧谐振子看成弹簧谐振子, , 那么化学键那么化学键的伸缩振动就是两个原子核在的伸缩振动就是两个原子核在键轴方向上的简谐振动键轴方向上的简谐振动. .根据虎克定律K212121mmmmK: 化学键的力常数, Nm-1:化学键的折合质量, kgm1、m2: 化学键连结的两个原子核的质量,kg2022-6-6有机波谱解析2015-114吸收频率用波数(吸收频率用波数()表示)表示c: 光速, 31010cm/sK: Nm-1:原子折合质量 kgkcc211发生振动能级跃迁需要
11、能量的大小取决于键两端发生振动能级跃迁需要能量的大小取决于键两端原子的折合质量和键的力常数,即取决于分子的结构特征原子的折合质量和键的力常数,即取决于分子的结构特征)11(130721MMk2022-6-6有机波谱解析2015-115查表知查表知C=C键键 9.6, 计算波数值计算波数值13072111cm16502/126 . 91307- - kkcv正己烯vC=C 1652 cm-1已知已知C=O键键 k=12, 求求 vC=Ov1cm1725121612+161307 键类型键类型: C C C =C C C 力常数力常数: 15 17 9.5 9.9 4.5 5.6峰位峰位: 4.5
12、 m 6.0 m 7.0 m 2022-6-6有机波谱解析2015-116 影响基本振动跃迁的波数或频率的直接因素为化学键力影响基本振动跃迁的波数或频率的直接因素为化学键力常数常数k k 和原子质量。和原子质量。 k k大,化学键的振动波数高,大,化学键的振动波数高,如如k kC C C C( (2222cm2222cm-1-1) k) kC=CC=C( (1667cm1667cm-1-1) k) kC-CC-C( (1429cm1429cm-1-1) )(质量相近质量相近) 质量质量m m大,化学键的振动波数低,大,化学键的振动波数低,如如m mC-CC-C( (1430cm1430cm-1
13、-1) m) mC-NC-N( (1330cm1330cm-1-1) m) mC-OC-O( (1280cm1280cm-1-1) () (力常数相近力常数相近) 经典力学导出的波数计算式为近似式。因为振经典力学导出的波数计算式为近似式。因为振动能量变化是量子化的,分子中各基团之间、化学动能量变化是量子化的,分子中各基团之间、化学键之间会相互影响,即分子振动的波数与分子结构键之间会相互影响,即分子振动的波数与分子结构(内因)和所处的化学环境(外因)(内因)和所处的化学环境(外因) 有关。有关。2022-6-6有机波谱解析2015-117红外光谱表示方法红外光谱表示方法:常用坐标曲线表示法. 横
14、坐标横坐标: :表示吸收峰的位置, 用波数波数(cm-1, 4000400cm-1)或波波 长长(m, 2.5 25m)作量度. 纵坐标纵坐标: 表示吸收峰的强弱, 用百分透过率百分透过率(T%) 或吸光度吸光度(A)作量 度单位. 正己烷的红外光谱正己烷的红外光谱3. IR光谱表示方法光谱表示方法2022-6-6有机波谱解析2015-118观察谱图:观察谱图: a) 峰数:吸收峰的数目b) 峰强:峰的强度(强 中 弱峰)c) 峰形:吸收峰的形状d) 峰位:吸收峰的位置3.1. 峰位、峰数、峰强度、峰的形状峰位、峰数、峰强度、峰的形状2022-6-6有机波谱解析2015-119CO2分子分子
15、2349667峰数与分子自由度有关。无瞬间偶极矩变化时,无峰数与分子自由度有关。无瞬间偶极矩变化时,无红外吸收红外吸收。(3.1.13.1.1)峰数)峰数2022-6-6有机波谱解析2015-120峰数减少的峰数减少的原因: 分子振动过程中如不发生瞬间偶极矩变化则不会引 起红外吸收(对称性的分子) 频率相同的振动发生简并 强的宽峰将附近弱而窄的吸收峰覆盖 吸收频率在测定区域以外,常用为中红外区域(4000400cm-1)吸收强度太弱,无法显示出吸收峰 2022-6-6有机波谱解析2015-121摩尔吸光系数(摩尔吸光系数()强度强度符号符号200200很强VS7575200200强S25257
16、575中等M5 52525弱W0 05 5很弱VW(一) 峰强的表示方法 红外光谱中用透光百分率(T)表示吸收峰强度 T%=(I/I0)100% I0:入射光强度 I:透射光强度 T%越小,吸收峰越强红外光谱中吸收峰的绝对强度可用摩尔吸光系数表示:红外光谱中吸收峰的绝对强度可用摩尔吸光系数表示:(3.1.23.1.2)峰强)峰强2022-6-6有机波谱解析2015-122偶极矩的变化大小主要取决于下列几种因素 电负性:化学键两端连接的原子,若它们的电负性相差越大(极性越大),瞬间偶极矩的变化也越大,在伸缩振动时,引起的红外吸收峰也越强 振动形式:振动形式不同对分子的电荷分布影响不同,故吸收峰强
17、度也不同。通常不对称伸缩振动比对称伸缩振动的影响大,而伸缩振动又比弯曲振动影响大。 结构对称性:对称分子偶极矩为零;瞬间偶极矩变化越大,吸收峰越强;瞬间偶极矩变化越大,吸收峰越强; 能级跃迁的几率越大,吸收峰也越强。能级跃迁的几率越大,吸收峰也越强。 基态第一激发态,产生一个强吸收峰(基峰); 基态第二激发态,产生一个弱的吸收峰(倍频峰)2022-6-6有机波谱解析2015-123宽峰宽峰尖峰尖峰肩峰肩峰双峰双峰3.1.3) 峰形峰形 吸收峰的形状决定于官能团的种类,可以辅助判断官能团 例如:缔合羟基,和炔氢,它们的吸收峰位置只略有差别,但主要差别在于峰形: -缔合羟基峰宽,圆滑 -炔氢则显示
18、尖锐的峰形2022-6-6有机波谱解析2015-1242022-6-6有机波谱解析2015-1252022-6-6有机波谱解析2015-126c: 光速, 31010cm/sK: Nm-1:原子折合质量)11(1307)11(212112121mmkmmkckcc影响吸收频率的因素影响吸收频率的因素(1). 键的力常数键的力常数K的影响的影响. 化学键键能越大 力常数越大 振动频率键类型键类型力常数力常数/cm/cm-1-1 2150 1650 1200a: a: 成键方式的影响成键方式的影响CCCCCC3.1.4)3.1.4)影响吸收频率的因素影响吸收频率的因素( (峰位峰位) )2022-
19、6-6有机波谱解析2015-127振动类型振动类型C-HC-H伸缩振动伸缩振动 C-HC-H弯曲振动弯曲振动 (力常数较大) (力常数较小)/cm/cm-1-1 3000 1340b: b: 振动类型的影响振动类型的影响c: c: 杂化状态的影响杂化状态的影响键类型键类型杂化状态杂化状态 sp sp2 sp3/cm/cm-1-1 3300 3100 2900C HC HC H2022-6-6有机波谱解析2015-128d: d: 诱导效应的影响(诱导效应的影响(I I效应)效应)化合物化合物C=O C=O /cm/cm-1-1 1715 1730 1800 1920 1928 电负性原子或基团
20、通过静电诱导作用, 引起分子中化学键的电子云分布变化电子云分布变化, 而改变力常数强极性键C=OC=O+-X(吸电子基)极性降低双键性 质加强力常数增加吸收向 高波数移动X (推电子基)吸收向 低波数移动RCORRCOHRC ClORC FOFC FO2022-6-6有机波谱解析2015-129e: e: 共轭效应的影响(共轭效应的影响(c c效应)效应)化合物化合物C=C C=C /cm/cm-1-1 1650 1630化合物化合物C=O C=O /cm/cm-1-1 1715 1693 共轭效应使共轭体系中电子云密度平均化, 双键的键略变长, 单键的键长略变短, 从而改变力常数.CCCCC
21、CRCORCORCCCOCCCO+_双键性质减弱双键性质减弱2022-6-6有机波谱解析2015-130(2). 原子质量的影响原子质量的影响 值, 振动频率2111mm 与碳原子相连的原子质量增加, 振动频率相应减小 键类型键类型C-H C-C C-O/cm/cm-1-1 3000 1200 1100键类型键类型 C-Cl C-Br C-I/cm/cm-1-1 750 600 500)11(1307)11(212112121mmkmmkckcc2022-6-6有机波谱解析2015-1312 .2 .外部因素对吸收峰的影响外部因素对吸收峰的影响. .(1 1)物态效应)物态效应 同一个化合物在
22、不同聚集状态下红外光谱之间有较大的差异。通同一个化合物在不同聚集状态下红外光谱之间有较大的差异。通常,物质由固态向气态变化,其波数将增加,且强度也有变化。常,物质由固态向气态变化,其波数将增加,且强度也有变化。丙酮丙酮 液态时,液态时, C=OC=O=1718cm=1718cm-1-1; ; 气态时,气态时, C=OC=O=1742cm=1742cm-1-1,因此在查阅标准红外图谱时,因此在查阅标准红外图谱时,注意试样状态和制样方法。注意试样状态和制样方法。(2 2)晶体状态的影响)晶体状态的影响 固态光谱的吸收带比液态时尖锐而且多。固态光谱的吸收带比液态时尖锐而且多。 固体样品在由石蜡油糊状
23、法或压片法测定时,如果晶形不同或粒固体样品在由石蜡油糊状法或压片法测定时,如果晶形不同或粒子大小不同都会产生谱图的差异。子大小不同都会产生谱图的差异。1012022-6-6有机波谱解析2015-1323 3. .溶剂效应溶剂效应 极性基团的伸缩振动频率通常随溶剂极性增加而降低。极性基团的伸缩振动频率通常随溶剂极性增加而降低。如羧酸中的羰基如羧酸中的羰基C=OC=O: 气态时:气态时: C=OC=O=1780cm=1780cm-1-1 非极性溶剂:非极性溶剂: C=OC=O=1760cm=1760cm-1-1 乙醚溶剂:乙醚溶剂: C=OC=O=1735cm=1735cm-1-1 乙醇溶剂:乙醇
24、溶剂: C=OC=O=1720cm=1720cm-1-1因此红外光谱通常需在非极性溶剂中测量。因此红外光谱通常需在非极性溶剂中测量。 总之,影响基团频率的因素较多,分析时应综合总之,影响基团频率的因素较多,分析时应综合考虑各种因素考虑各种因素402022-6-6有机波谱解析2015-1332022-6-6有机波谱解析2015-134 (一) 特征谱带区 4000-1350cm-1,在这个区域内基团的红外吸收峰比较特征, 相对容易辨认,称特征谱带区。 (二) 指纹区 1350-400cm-1,在这个区域内红外吸收峰比较密集、吸收峰相互影响比较大,特征性弱,不易辨认,但这个区域内的吸收能够反映出分
25、子结构上的微小变化,称指纹区。4.红外光谱中常用术语红外光谱中常用术语2022-6-6有机波谱解析2015-135 (三) 相关峰 对一个基团而言,所谓相关峰就是相应于其各种振动形式产生的相应的红外吸收峰。 如:对于甲基,其有CH(as) 2960cm-1, CH(s) 2870cm-1, CH(as) 1470cm-1, CH(s) 1380cm-1, CH(面外) 720cm-1,这些吸收峰之间互称相关峰。 2022-6-6有机波谱解析2015-136波长(m)波数(cm1)键的振动类型2.73.337503000OH, NH3.03.333003000CH, =CH,CH,ArH)(极少
展开阅读全文