书签 分享 收藏 举报 版权申诉 / 39
上传文档赚钱

类型非线性振动多尺度课件.pptx

  • 上传人(卖家):三亚风情
  • 文档编号:2877722
  • 上传时间:2022-06-07
  • 格式:PPTX
  • 页数:39
  • 大小:705.26KB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《非线性振动多尺度课件.pptx》由用户(三亚风情)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    非线性 振动 尺度 课件
    资源描述:

    1、这种方法是 Sturrock,Frieman,Nayfeh,Sandri 发展得一种奇异摄动法。它适合求解周期运动也可以用于耗散系统和其它场合。2 , 1 , 0 ,ntTnn22102210221100DDDTTTdtdTTdtdTTdtdTTdtd1.5 多尺度法多尺度法把解看成是T1, T2, T3 , 的函数。)()()()(2212121202022221212120102220211020202221022dtdTTdtdTTTdtdTTTdtdTTTdtdTTdtdTTTdtdTTTdtdTTTdtdTTTTTdtddtd22102210221100DDDTTTdtdTTdtdT

    2、TdtdTTdtd)2(2 20212102021320221321210303202102022DDDDDDDDDDDDDDDDDDDDDDdtd)()()()(2212121202022221212120102220211020202221022dtdTTdtdTTTdtdTTTdtdTTTdtdTTdtdTTTdtdTTTdtdTTTdtdTTTTTdtddtd导数的简易计算22102210 DDDTTTdtd)2(2 )(1021210202221022DDDDDDDDDdtd),( ),(),()(2102221012100TTTxTTTxTTTxtx注意关系,精确度注意关系,精确度

    3、 ),(12101nnTTTT),(20 xxfxpx 求解求解 设设 ),(),(),()(2102221012100TTTxTTTxTTTxtx)()( 02112020110001230222131120130320210002210 xDxDxDxDxDxDxDxDxDxDxDxDxDxDxDxDxDxDdtdxx)()( 02112020110001230222131120130320210002210 xDxDxDxDxDxDxDxDxDxDxDxDxDxDxDxDxDxDdtdxx )(2210 xxxtx )(2210 xxxtx)()(0211202011000 xDxDxD

    4、xDxDxDx)2(2)2()2()2( 222 )2(2020211102202010120020120213020212210311020103203220212002020212102022xDDDxDDxDxDDxDxDxDDDxDDDxDDxDDxDDxDxDxDxDxDDDxDDxDdtxd)2(2 )(1021210202221022DDDDDDDDDdtd)(),(),(),( .)()(),() (),(),().(),()(),( ),(),(0110000100000002112020110000221000000000000000000 xDxDxxDxfxxxDxfx

    5、DxfxDxDxDxDxDxxDxfxxxxDxfxDxfxDxxxDxfxxxxDxfxDxfxxf )(2210 xxxtx)()(0211202011000 xDxDxDxDxDxDx),(20 xxfxpx )(),(),(),() .( )2(2 )2(011000010002000221020020211102202010120020 xDxDxxDxfxxxDxfxDxfxxxpxDDDxDDxDxDDxDxD2200002201010010002220201 11020020000001011002(,)2(2)(,)(,)()D xp xD xD D xp xf x D xD

    6、 xD D xDD D xp xf x D xf x D xxD xD xxx 对比系数对比系数 )(),(),( )2(2),(20011000010000202111022022000010120120020020 xDxDxxDxfxxxDxfxDDDxDDxpxDDxxfxDDxpxDxpxD)(),(),()2(2),(20011000010002200202111022000120010120020020 xDxDxxDxfxxxDxfxpxDDDxDDxDDxxfxpxDDxDxpxD02xxx 例1初始条件0)0(,)0(0 xax解:0020020 xpxD00),(),(2

    7、1210iTiTeTTAeTTAxxxx2 120pxxxf2),(),(2000010120120 xDxfxDDxpxD0000001121211212101010),(),(),(),(iTiTiTiTiTiTeAiDeAiDeTTAieTTiADeTTAeTTADDxDD),(2000010120120 xDxfxDDxpxD02xxx 例1初始条件0)0(,)0(0 xaxxxx2 解:120p0020020 xpxD00),(),(21210iTiTeTTAeTTAxxxxf2),(0000iTiTeAiiAexD)(22),(0000000iTiTeAiiAexDxDxf0000

    8、0000)( 2)( 2)( 2)( 2)( 2)( 2111111120120iTiTiTiTiTiTiTiTeiAAiDeiAAiDeAiAiDeiAAiDeAiiAeeAiDeAiDxpxD0011010iTiTeAiDeAiDxDD0000iTiTeAiiAexD)(22),(0000000iTiTeAiiAexDxDxf),(200010120120DxxfxDDxpxD01 AAD0),(),(21121TTATTTA0)()(dttAtdA考虑tCetA)(0),(),(21121TTATTTA1)(),(2021TeTaTTA00),(),(21210iTiTeTTAeTTAx

    9、cceeTaxiTT01)(200 复数共轭关系复数共轭关系 )Re(2ZZZBAABBABA)()(AfAfBAABBAABBBAA)(0120120 xpxD00),(),(2112111iTiTeTTAeTTAx001110iTiTeAieiAxD001111110iTiTeAiDeAiDxDD0000iTiTeAiiAexD001101iTiTeADeADxD002121021iTiTeADeADxD0),(000 xxDxf)(2)(2)(),( 0000111111110000iTiTiTiTeADeADeAieiAxDDxxDxf0022020iTiTeAiDeAiDxDD001

    10、111110iTiTeAiDeAiDxDD0022020iTiTeAiDeAiDxDD002121021iTiTeADeADxD0),(00 xDxxf)(2)(2)(),( 000011110110000iTiTiTiTeADeADeAieiAxDxDxxDxf)(),(),( )2(20110000100002021110220220 xDxDxxDxfxxxDxfxDDDxDDxpxDcceADiAAiDADAiDeADeADeAieiAeAiDeAiDeADeADeAiDeAiDxDxDxxDxfxxxDxfxDDDxDDxpxDiTiTiTiTiTiTiTiTiTiTiT000000

    11、00000)2222()(2)(2)(2)()(2)(),(),()2(21122111111122212111110110000100002021110220220cceADiAAiDADAiDeADeADeAieiAeAiDeAiDeADeADeAiDeAiDxDxDxDxxfxxDxxfxDDDxDDxpxDiTiTiTiTiTiTiTiTiTiTiT00000000000)2222 ()( 2)( 2)( 2)()( 2)(),(),()2(2112211111112221211111011000100020211102202201)(),(2021TeTaTTA11111)(2)(2

    12、2)(2)(2)(2222222022011120202201111221111TTTTTeTaiDeTaiAAiDeTaeTaiDeTaiAAiDADAiDADiAAiD0)(2)(221120220111TTeTaiDeTaiAAiD消除永年项0)(2)(221120220111TTeTaiDeTaiAAiD消除永年项)(2)(211120220111TTeTaDeTiaAAD)()(xqyxpdxdy)()()(cdxexqeydxxpdxxp)()(2)(21)()(2)(2121120220211120220111111TaTTaDTiaeTadTeeTaDTiaeATdTTdTcc

    13、eTaTTaDTiaexiTT01)()(2)(2121120220100),(),(2112111iTiTeTTAeTTAxcceeTaxiTT01)(200cceTaTTaDTiaexiTT01)()(2)(21211202201120220)(2)(211TTaDTiaeT此项会使x1发散,所以0)(2)(20220TaDTia20002iTeaacceeTaxiTT01)(200cceTaexiTT01)(211)2cos(2)()cos()(2)2cos(2)()()()()()()(),(),(),()(200202120002212002212002212021022210121

    14、001101201010120101tteaOTeTaTTeaOcceTaeeeaOcceTaeeeeaOcceTaeeeTaTTTxTTTxTTTxtxtTTiTTiTiTTiTTiTTiTiTTiTTdtdxxxdtxd)1 (222)(),(),( )2(2),(200110001000202111022022000010120120020020 xDxDxDxxfxxDxxfxDDDxDDxpxDDxxfxDDxpxDxpxD例2初始条件0)0(,)0(0 xax0020020 xpxDdtdxxxdtxd)1 (22200),(),(21210iTiTeTTAeTTAx120p),(

    15、200010120120DxxfxDDxpxD0011010iTiTeAiDeAiDxDD0000iTiTeAiiAexD0020000)1 (),(xDxxDxfcceiAeAAAADieAieAAAADieiAeAAAADieAeAAeAAeAieAiiAeeAiDeAiDeAiiAeeAAeeAiDeAiDeAiiAexeAiDeAiDxDxeAiDeAiDxpxDiTiTiTiTiTiTiTiTiTiTiTiTiTiTiTiTiTiTiTiTiTiTiTiTiTiT0000000000000000000000000033213321332133223311211201100201112

    16、0120)2()2()2()()(22)() (1 22)(1 ()(2)1 ()(2),(200010120120DxxfxDDxpxD0011010iTiTeAiDeAiDxDD0000iTiTeAiiAexD0020000)1(),(xDxxDxf00000000000000033213131313321)2(2)(2 )(2)2(iTiTiTiTiTiTiTiTiTiTiTiTiTiTiTeiAAAAADiAeAiAAeAAiiAeeADiAeAiAAeAAiiAeiAeDeAAAieAAAieAieAiDeAieAAAADicceiAeAAAADixpxDiTiT0033211201

    17、20)2 (0221AAAAD 消去长期项消去长期项 0221AAAAD),(exp),(212121TTiTTaA 设设 ),(),(2121TTTTa为实数为实数 0)8121(0exp81exp21expexp0231131121aaTaTaiiaiaiTiaiTaAAAAD081210311aaTaTa1)(14)(222TeTcaT 初始条件为初始条件为 0) 0(,) 0(0 xaxteaaaTcTca) 14(1414)(,)(1420220222000000021122cos()cos( )iTiTiTiTiixAeAeae eae eaTTaOcos( )xaO 一次近似解一

    18、次近似解 cTc)(2 一次近似一次近似 1)(14)(222TeTcaTcceiAxpxDiT033120120cceiAeTTBxiTiT003321181),()(),(),( )2(201100010002021110220220 xDxDxDxxfxxDxxfxDDDxDDxpxD200000001),( 2),(xxDxxfDxxxDxxf1)(14)(222TeTcaT二次近似时二次近似时 ),(exp),(212121TTiTTaAcceADeTTBiDxDDiTiT0033121111083),( ),(2),()2(00212212102021cceTTAiDeTTADxD

    19、DDiTiTcceAeTTiBeTTADxDxDiTiTiT0003321211011083),(),()8383()(1 )8181)()( 2221432)(),(),()2(20000000000000000000033133123333221331101100010002021110220220iTiTiTiTiTiTiTiTiTiTiTiTiTiTiTiTiTiTiTiTeAiBeAeDeAiBeAeDAeAeeiABeeiABeiAeiAeAeAecceAiDeADcceADeBiDxDxDxDxxfxxDxxfxDDDxDDxpxDcceAiBeeADeAAAeAAAeiABeA

    20、AeAAAeAieAiDeADeADeBiDxpxDiTiTiTiTiTiTiTiTiTiTiTiTiT)83)(2121)81)(22432000000000000033122223322222213311220220cceAiBeeADeAeAAAeiABeeAAAeAieAiDeADeADeBiDxpxDiTiTiTiTiTiTiTiTiTiTiTiTiT)83)(21 )81)(2(22432000000000000033122223322222213311220220cceAiBeeADeAAAeAAAeiABeAAeAAAeAieAiDeADeADeBiDxpxDiTiTiTiTi

    21、TiTiTiTiTiTiTiTiT)83)(2121)81)(22432000000000000033122223322222213311220220cceAAieBAeADAeABeiAeADAeAiBeAeDAAeAABeAieAABeAiAeABeiAeADeAiDADBiDxpxDiTiTiTiTiTiTiTiTiTiTiTiTiTiTiTiTiT0000000000000000032212553231233132234553233122112202208383)83)(21 (41221441243)22(cceAiBeeADeAeAAAeiABeeAAAeAieAiDeADeADe

    22、BiDxpxDiTiTiTiTiTiTiTiTiTiTiTiTiT)83)(21 )81)(2(22432000000000000033122223322222213311220220cceAAieBAeADAeABeiAeADAeAiBeAeDAAeAABeAieAABeAiAeABeiAeADeAiDADBiDxpxDiTiTiTiTiTiTiTiTiTiTiTiTiTiTiTiTiT0000000000000000032212553231233132234553233122112202208383)83)(21 (41221441243)22(NSTcceiBADAAeAABiAADAA

    23、ABiABAiAAiDADBiDNSTcceAAeBiAeADAeiBeADAAeAABiABeAiAeAiDADBiDxpxDiTiTiTiTiTiTiTiT00000000)(21 ()83412422(83)(21 ()4124()22(13221232222113221213222211220220NSTcceBAAiADAABiAADAAABiABAiAAiDADBiDxpxDiT0)21 ()21 (412422121232222112202200000003333320323200088cossinsin3321cos11671111lnsin1sin 3 1648163216i

    24、TiTiTiTiTiTiixAeAeBeBeA eA eaabataaaabtat2通过消除久期项,即可得到解表达式解的最终表达式为(取实部):例例:用多尺度求Duffing方程自由振动的二次近似解 301xxx 23001210122012,0 xxT T Tx T T TxT T T解解:设: 方程右端为: 3201232200132230013()3()xxxxx xxx x 200023011010022202201 1100200102223D xxD xxD D xxD xxD D xD xD D xx x 003223011123iTiTAD xxiA A eA eccT 213

    25、0AiA AT0000000000000033332012233223355335532324433883283228iTiTiTiTiTiTiTiTiTiTiTiTiTiTAAx xAeAeeeA eA eAAA eA eA eA eA A eA A eA AeAA e000000000223202221112535324223532452211342 3283283933228848iTiTiTiTiTiTiTiTiTAAAAAD xxiieeieTTTTA eA A eA AeccAAAAiA AeiA A eA eccTTT 00035232450222152132888iTiTiTAD xxiA AeA AeA eccT 消除长期项,则二阶可解性条件:322322152081516AiA ATAiA AT 00354522116464iTiTxA AeA ecc 下一步,求A12iAae0224120003158256aaaatt代入一阶、二阶可解性条件并分离实部虚部可解的: 2325000022400020121cos1cos3cos53232102431518256inixaaaaaatTt

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:非线性振动多尺度课件.pptx
    链接地址:https://www.163wenku.com/p-2877722.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库