铝基复合材料.课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《铝基复合材料.课件.ppt》由用户(三亚风情)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 复合材料 课件
- 资源描述:
-
1、铝基复合材料及其应用铝基复合材料及其应用1、综述2、种类及分类3、材料的制备工艺 4、结构与性能5、应用6、实例分析金属基复合材料的综述 金属基复合材料,是在各金属材料基体内用多种不同复合工艺,加进增强体,以改进特定所需的机械物理性能。金属基复合材料在比强度、比钢度、导电性、耐磨性、减震性、热膨胀等多种机械物理性能方面比同性材料优异得多。金属基复合材料(MMCs)有铝基、镁基、钛基、镍基、铁基复合材料等多种,其中尤以铝基复合材料发展最快而成为金属基复合材料中的主流。铝基复合材料基体 铝有许多特点,如质量轻、密度小、可塑性好,熔点低制备工艺简单。 铝基复合技术容易掌握,易于加工,比强度和比刚度高
2、,高温性能好,更耐疲劳和更耐磨,阻尼性能好,热膨胀系数低。 同其他复合材料一样,它能组合特定的力学和物理性能,以满足产品的需要。因此,铝基复合材料已成为金属基复合材料中最常用的、最重要的材料之一。常见铝基体(1)工业纯铝(2)铸造冶金变形铝合金(常见有2014、2024、2124 等,且不含Mn、Cr的铝合金,因其产生脆性相 )(3)粉末冶金变形铝合金(4)铸造铝合金(5)新型铝合金复合材料增强基 分类:连续的和非连续的纤维、晶须、颗粒 特性: 高强度、高模量、高刚度、抗疲劳、耐热、耐磨、抗腐蚀、热膨胀系数小、导电、导热以及润湿性、化学相容性、易加工等。 铝基复合材料的增强纤维有硼纤维,碳纤维
3、,碳化硅纤维等。铝复合材料的种类与分类铝合金材料可按增强相,铝基体及材料特性三方面进行分类。 按增强体分类: 长纤维增强复合材料 短纤维增强复合材料 颗粒增强复合材料 混合增强复合材料 纳米复合材料纳米复合材料 层合复合材料层合复合材料 倾泻复合材料倾泻复合材料 表面复合材料表面复合材料 变形铝合金基复合材料 铸造铝合金基复合材料 新型铝合金基复合材料 工业纯铝基复合材料 以特性分类 功能复合材料 结构复合材料 智能复合材料以铝基体分类 铝基复合材料的制造工艺连续纤维增强连续纤维增强铝基复合材料的制造方法:1、粉末冶金法2、高能-高速固结工艺3、压力浸渗铸造工艺4、液态金属搅拌铸造法1、粉末冶
4、金2、搅拌熔铸3、压力铸造4、喷射沉积颗粒增强颗粒增强铝基复合材料的制造方法:纳米管纳米管铝基复合材料的制备方法: 1、粉末冶金 2、搅拌铸造 3、熔体浸渍 4、原位合成 粉末冶金法粉末冶金法 粉末冶金法是最早用来制造铝基复合材料的方法,是一种比较成熟的工艺方法。采用粉末冶金法时,首先将颗粒增强物和铝合金粉末用机械手段均匀混合,进行冷压实,然后加热除气,在液相线与固相线之间进行真空热压烧结,得到复合材料的坯料,在将坯料进行挤压、轧制、锻造、拉拔等二次加工就可制成所要的型材零件。 优点优点: 可将增强物颗粒和铝合金粉按任意比例混合,而且混合均匀性好,不会出现偏析和偏聚,制备的复合材料机械性能较高
5、。缺点缺点: 粉末冶金法制造工艺及装备复杂,生产成本高。高能高能- -高速固结工艺高速固结工艺 优点:优点: 高能量高速度脉冲有利于将冷模中的导电粉体快速加热到指定温度,从而控制相变和组织粗化,这是常规粉末冶金工艺无法实现的。高能-高速固结工艺可使复合材料的相对密度达95%以上。在短时间内使陶瓷颗粒和铝合金粉末的混合物受到高脉流的放电作用后,迅速提高能量,并在较小外力作用下,使之固结成复合材料的工艺。压力浸渗工艺压力浸渗工艺 压力浸渗工艺是先将增强体制成预制件,再将预制件放入模具后,以惰性气体或机械装置为压力媒体将铝液压入预制件的间隙,凝固后即形成复合材料。 这种工艺简单,但预制件中的气体不易
6、在凝固前排出而造成气孔与疏松,同时预制件也易产生变形和偏移。 液态金属搅拌铸造法液态金属搅拌铸造法 液态金属搅拌铸造法的基本原理是将颗粒增强物直接加入到熔融的铝合金中,通过一定方式的搅拌使颗粒均匀地分散在基体熔体中,复合成颗粒增强铝基复合材料。复合好的熔体可浇铸成锭坯、铸件等使用。这种工艺简单、生产效率高、制造成本低廉。复合好的铸锭经重熔后,可精密压成各种型材、管材、棒材等。 它是目前最成熟、最具竞争力、也是工业化规模生产铝基复合材料的最主要的方法。铝合金复合材料的结构与性能 碳纤维增强铝基复合材料结构 、用液态浸渍法制备(概念) 其铝基中无方向性,表明具有各向异性。 、用固态热压法制备(概念
7、) 其铝基中含有纤维,表明具有较高拉伸强度。 (一)、长纤维增强铝基复合材料性能 1、硼铝复合材料 特点:有优异的疲劳强度,比强度和比模量高,尺寸稳定性好,线膨胀系数与半导体芯片非常接近。硼纤维增强铝基复合材料用于航天飞机主舱体龙骨桁架和支柱 (二)短纤维增强铝基复合材料 特点:在室温和高温下的弹性模量有较大的提高,但线膨胀系数由所下降,耐磨性改善,并具有良好的的导热性。(三)碳铝复合材料 特点:碳纤维的长度与直径比例对碳铝复合材料的性能有很大的影响(当长径比增大时,抗拉强度增大,增大到一定值时,抗拉强度又开始减少)(四)晶须和颗粒增强铝基复合材料 特点:优异的性能,制造方法简单,增强体主要是
8、碳化硅和氧化铝。 碳化硅:随它的含量增加,抗拉强度和弹性模量都增加氧化铝:比强度和比刚度高。铝基复合材料的应用1、在汽车领域的应用 美国的Duralcan研制出用SiC颗粒增强铝基复合材料制造汽车制动盘,用其代替传统铸铁制动盘,使其重量减轻40%60%,而且提高了耐磨性能,噪音明显减小,摩擦散热快;同时该公司还用SiC颗粒增强铝基复合材料制造了汽车发动了活塞和齿轮箱等汽车零部件,这种汽车活塞比铝合金活塞具有较高的耐磨性、良好的耐高温性能和抗咬合性能,同时热膨胀系数更小,导热性更好。 用SiCp/Al复合材料制成的汽车齿轮箱在强度和耐磨性方面均比铝合金齿轮箱有明显的提高。铝合金复合材料也可以用来
9、制造刹车转子、刹车活塞、刹车垫板、卡钳等刹车系统元件。 上个世纪80年代,日本丰田公司成功地用/AlOAl32/AlOAl32复合材料制备了发动机活塞,与原来的铸铁发动机活塞相比,重量减轻了5%10%,导热性提高了4倍。 2 、在航空航天领域的应用 Cercast公司采用熔模铸造工艺研制成A357 SiC20%Vol+复合材料,用该材料代替钛合金制造直径达180mm、重17.3kg的飞机摄相镜方向架,使其成本和重量明显降低, 同时该复合材料还可用来制造卫星反动轮和方向架的支撑架。 美国DWA公司用6061SiC 25%p(这是什么 怎么念)铝基复合材料代替7075制造航空结构的导槽、角材,使其
10、密度下降了17%,模量提高了65%。 铸造SiC颗粒增强A356和A357复合材料可以制造飞机液压管、直升机的起落架和阀体等。 铝基复合材料,特别是SiC增强铝基复合材料,由于具有热膨胀系数小、密度低、导热性能好等优点,适合于制造电子器材的衬装材料、散热片等电子器件。SiC颗粒增强铝基复合材料的热膨胀系数完全可以与电子器件材料的热膨胀相匹配,而且导电、导热性能也非常好。 IBM公司2004年第2期黄永攀等:铝基复合材料的性能、应用及制造工艺就是利用其上述性能,在MCMs器件中使用该种材料封装和改进冷却系统结构,使其工作时产生的热量迅速扩散,提高了元件的有效性。3、在电子和光学仪器中的应用 在精
11、密仪器和光学仪器的应用研究方面,铝基复合材料用于制造望远镜的支架和副镜等部件。 另外铝基复合材料还可以制造惯性导航系统的精密零件、旋转扫描镜、红外观测镜、激光镜、激光陀螺仪、反射镜、镜子底座和光学仪器托架等许多精密仪器和光学仪器。 4 、在体育用品上的应用 铝基复合材料可以代替木材及金属材料来制作网球拍、钓鱼竿、高尔夫球杆和滑雪板等。 用SiC颗粒增强铝基复合材料制作的自行车链齿轮重量轻、刚度高、不易挠曲变形,性能优于铝合金链齿轮。 发展趋势 采用颗粒增强制备铝基复合材料成本相对较低,原材料资源丰富,制备工艺简单。选择适当的增强颗粒与基体组合可制备出性能优异的复合材料,具有很大的发展潜力和应用
展开阅读全文