四川省南充市2022届高三下学期5月适应性考试(三诊) 数学(理) 试题(含答案).pdf
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《四川省南充市2022届高三下学期5月适应性考试(三诊) 数学(理) 试题(含答案).pdf》由用户(小豆芽)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 四川省南充市2022届高三下学期5月适应性考试三诊 数学理 试题含答案 四川省 南充市 2022 届高三 下学 适应性 考试 数学 试题 答案 下载 _模拟试题_高考专区_数学_高中
- 资源描述:
-
1、高三理科数学(三诊)第 1页(共 4 页)南充市高 2022 届高考适应性考试(三诊)南充市高 2022 届高考适应性考试(三诊)理科数学理科数学注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其他答案标号。回答非选择题时,将答案写在答题卡上。写在本试卷上无效。3考试结束后,将答题卡交回。一、选择题:本题共 12 小题,每小题 5 分,共 60 分在每小题给出的四个选项中,只有一项是符合题目要求的1已知集合| 14 ,|04UxxAxx ,则UA=()A)0 , 1B0
2、, 1C)0 , 1(D0 , 1(2设(0,2 ),则“方程22+134sinxy表示双曲线”的必要不充分条件为()A( ,2 )B2(,2 )3C3( ,)2D3( ,)223为考查 A,B 两种药物预防某疾病的效果,进行动物实验,分别得到如下等高条形图,根据图中信息,下列说法最佳的一项是()A药物 B 的预防效果优于药物 A 的预防效果B药物 A 的预防效果优于药物 B 的预防效果C药物 A,B 对该疾病均有显著的预防效果D药物 A,B 对该疾病均没有预防效果4已知随机变量21,XN,且0P XP Xa,则6axx的展开式中常数项为()A240B60C240D605以坐标原点 O 为圆心
3、的圆全部都在平面区域+3602 20 xyxy内,则圆 O 的面积的最大值为()A518B59C2D秘密启封并使用完毕前【考试时间:2022 年 5 月 7 日下午 1500-1700】高三理科数学(三诊)第 2页(共 4 页)6函数 1g xf xfx的图象可能是()ABCD7已知等差数列na的公差为d,有下列四个等式:11a ;1d ;120aa;33a 若其中只有一个等式不成立,则不成立的等式序号是()ABCD8在,2, 3, 2,90MCAMACABAABCRt中,ABAN21,BMCN与交于点 P,则BPNcos的值为()A55B552C55D5529教室通风的目的是通过空气的流动,
4、排出室内的污浊空气和致病微生物,降低室内二氧化碳和致病微生物的浓度,送进室外的新鲜空气.按照国家标准,教室内空气中二氧化碳日平均最高容许浓度应小于 0.15%.经测定,刚下课时,空气中含有 0.25%的二氧化碳,若开窗通风后教室内二氧化碳的浓度为y%,且y随时间t(单位:分钟)的变化规律可以用函数100.05tyeR描述,则该教室内的二氧化碳浓度达到国家标准需要的时间t(单位:分钟)的最小整数值为() (参考数据ln20.693,ln31.098)A7B9C10D1110设0.20.20.50.5log0.5log0.2abc,则cba,的大小关系为()AcbaBabcCbacDacb11已知
5、 P 为椭圆22221(0)xyabab上任意一点,点 M,N 分别在直线11:2lyx与21:2lyx 上,且2/ /PMl,1/ /PNl,若22|PMPN为定值,则椭圆的离心率为()A21B33C22D2312 已知函数xxxf1)(, 过点)0 , 1 (P作函数)(xfy 图像的两条切线, 切点分别为NM,.则下列说法正确的是()APNPM B直线MN的方程为012 yxC102MNDPMN的面积为23高三理科数学(三诊)第 3页(共 4 页)二、填空题:本题共二、填空题:本题共 4 4 小题,每小题小题,每小题 5 5 分,共分,共 2020 分分13若复数iiz12,则z在复平面
6、内对应的点在第_象限.14已知等比数列 na的前 n 项和为 Sn,963,63, 7SSS则若.15正方形 ABCD 边长为 3,P 为正方形 ABCD 边界及内部的动点,且2PBPA=,则动点 P的轨迹长度为.16如图,在三棱锥 OABC 中,三条侧棱 OA,OB,OC 两两垂直,且 OA=OB=OC=2,M为ABC 内部一动点,过 M 分别作平面 OAB,平面 OBC,平面 OAC 的垂线,垂足分别为 P,Q,R.直线 PR 与直线 BC 是异面直线;|MP|+|MQ|+|MR|为定值;三棱锥 MPQR 的外接球表面积的最小值为34; 当|MP|=|MQ|=23时, 平面 PQR 与平面
7、 OBC 所成的锐二面角为 45.则以上结论中所有正确结论的序号是.三三、解答题解答题:共共 7070 分分解答应写出交字说明解答应写出交字说明、证明过程或演算步骤证明过程或演算步骤,第第 17172121 题为必考题题为必考题,每个试题考生都必须作答第每个试题考生都必须作答第 2222、2323 题为选考题,考生根据要求作答题为选考题,考生根据要求作答(一)必考题:共 60 分17(本题满分 12 分) 已知ABC的三个内角 A,B,C 所对的边分别为 a,b,c,且.4, 5,22Cba(1)求Asin的值;(2)求)3sin(BA的值.18(本题满分 12 分) 2022 年春节后,新冠
8、肺炎的新变种奥密克戎在我国部分地区爆发该病毒是一种人传人,不易被人们直接发现,潜伏期长且传染性极强的病毒我们把与该病毒感染者有过密切接触的人群称为密切接触者 一旦发现感染者, 社区会立即对其进行流行性病医学调查,找到其密切接触者进行隔离观察调查发现某位感染者共有 10 位密切接触者,将这 10 位密切接触者隔离之后立即进行核酸检测核酸检测方式既可以采用单样本检测,又可以采用“k 合 1 检测法” “k 合 1 检测法”是将 k 个样本混合在一起检测,若混合样本只要呈阳性,则该组中各个样本再全部进行单样本检测;若混合样本呈阴性,则可认为该混合样本中每个样本都是阴性通过病毒指标检测,每位密切按触者
9、为阴性的概率为) 10( pp,且每位密切接触者病毒指标是否为阴性相互独立(1)现对 10 个样本进行单样本检测,求检测结果最多有 2 个样本为阳性的概率)(pf的表达式;(2)若对 10 个样本采用“5 合 1 检测法”进行核酸检测求某个混合样本呈阳性的概率;设总检测次数为 X,求 X 的分布列和数学期望 E(X)高三理科数学(三诊)第 4页(共 4 页)19(本题满分 12 分) 下图甲是由直角梯形 ABCD 和等边三角形 CDE 组成的一个平面图形,其中/ /BCAD,ABBC,22ADBCAB2,将CDE 沿 CD 折起使点 E 到达点 P 的位置(如图乙)使二面角P CD B为直二面
10、角(1)证明:ACPD;(2)若平面 PCD 与平面 PAB 的交线为 l,求 l 与平面 PAD 所成角的正弦值20(本题满分 12 分) 已知点 F 是抛物线2:4C xy的焦点,直线 l 与抛物线 C 相切于点00(,)P xy0(0)x ,连接 PF 交抛物线于另一点 A,过点 P 作 l 的垂线交抛物线于另一点 B.(1)若01x ,求直线l的方程;(2)求三角形PAB面积S的最小值.21(本题满分 12 分) 已知函数 21(1)2ln2f xaxaxx(1)讨论 f x的单调性;(2)当1a 时, ()g xfx,若34ln2m ,求证:对于任意0k ,函数( )( )g xmh
11、 xkx有唯一零点.(二)选考题:共(二)选考题:共 1010 分请考生在第分请考生在第 2222、2323 题中任选一题作答如果多做,则按所做的第题中任选一题作答如果多做,则按所做的第一题计分一题计分选修选修 4-4:坐标系与参数方程:坐标系与参数方程(10 分)22如图是以等边三角形OAB的每个顶点为圆心,以边长为半径,在另两个顶点间作一段弧,三段弧围成的曲边三角形, 记为勒洛OAB(勒洛三角形是德国机械工程专家,机械运动学家勒洛首先发现的,故命名为勒洛三角形).在平面直角坐标系xOy中,以坐标原点 O 为极点,以 x 轴非负半轴为极轴,取相同的单位长度建立极坐标系(规定:极径0,极角,
展开阅读全文