船舶在波浪中的运动理论-ch2-海洋波浪理论1讲课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《船舶在波浪中的运动理论-ch2-海洋波浪理论1讲课件.ppt》由用户(三亚风情)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 船舶 波浪 中的 运动 理论 ch2 海洋 讲课
- 资源描述:
-
1、船舶在波浪中的运动理论船舶在波浪中的运动理论Theory of Ship Motions in Waves LECTURE NOTES :OCEAN WAVE THEORY 22.1 海洋波浪概述海洋波浪概述2.2 水波理论基础水波理论基础 定解问题、线性与非线性水波、水波运动特征定解问题、线性与非线性水波、水波运动特征2. 3 风浪风浪 风浪及其描述、海况、典型浪谱、统计特征风浪及其描述、海况、典型浪谱、统计特征本章内容:本章内容: LECTURE NOTES :OCEAN WAVE THEORY 3常见的海洋中的波动现象 LECTURE NOTES :OCEAN WAVE THEORY 4
2、Wave periodSurface tensiongravityRestoring:Coriolis forcewindearthquakemoon & sunForcing:Relative energy海洋表面波动成因及波能频谱关系(海洋表面波动成因及波能频谱关系(Kinsman,1965) LECTURE NOTES :OCEAN WAVE THEORY 5随机风随机风波波 陡陡:H/相对波高相对波高:H/h相对波长相对波长: h/Random WaveAriy WaveStokes WaveCnoidal WaveSolitary Wave 水 体 LECTURE NOTES :OC
3、EAN WAVE THEORY 6 LECTURE NOTES :OCEAN WAVE THEORY 7gU2282192082190 LECTURE NOTES :OCEAN WAVE THEORY 8作用力主要成份:作用力主要成份:拖曳力、升力;惯性力;拖曳力、升力;惯性力;冲击力;静水力;冲击力;静水力; 系泊力系泊力水下结构物桩柱式结构物大尺度浮式结构物直墙式结构物斜坡式结构物一般波浪一般波浪驻波驻波破碎波破碎波破后波破后波 LECTURE NOTES :OCEAN WAVE THEORY 9 LECTURE NOTES :OCEAN WAVE THEORY 10 针对不同的针对不同的
4、 理论及方法:理论及方法:波陡波陡相对水深相对水深相对波高相对波高l 小振幅线性波小振幅线性波l 有限振幅波有限振幅波l 流函数流函数l 椭圆余弦波椭圆余弦波l 孤立波孤立波l 浅水长波等等浅水长波等等 LECTURE NOTES :OCEAN WAVE THEORY 110);,(2tzyx0210gzppt流场压力分布V流场速度分布 LECTURE NOTES :OCEAN WAVE THEORY 12 ),(),();(00)(,0)(21)(2)(, 000222yxgtyxftpTzorBztzgtFpLtthzhz LECTURE NOTES :OCEAN WAVE THEORY
5、13)(2Vtg 1021gzpptaztzVtzdtd)(1/aaazpp LECTURE NOTES :OCEAN WAVE THEORY tg 1zt)0(, 022zzgt22ttg-动力学方程动力学方程运动学方程运动学方程注:上面的推演比较粗略,但结论是正确的,后续将给予严格证明。 zgtg LECTURE NOTES :OCEAN WAVE THEORY 1500)0(0)(0222hzhzzorzzgtp 1aa)(O LECTURE NOTES :OCEAN WAVE THEORY 16);,(tzx)cos(tkxa)(0)0(1)0(),(02222zzztgztzzxzx
6、学条件动力运动学条件 - LECTURE NOTES :OCEAN WAVE THEORY 由线性动力学条件和由线性动力学条件和的表达式可知的表达式可知 由取下面的形式由取下面的形式)sin()(),tkxzFtzx()cos()()cos(tkxFgtkxa0agF)(0 由运动学条件由运动学条件 )sin()sin()(tkxtkxFa 0aF)(0学条件动力运动学条件 0 1-0 )()(ztgztz LECTURE NOTES :OCEAN WAVE THEORY akzaFkegzF)0()(gk2kgkgaa2 )sin(),tkxegtzxkza( 由由Laplace 方程方程0
7、2 )()(zFzFkkzaaegzFg)(0得到得到02222zx)sin()(),tkxzFtzx()(0)0()(zzgFeezFakzkz LECTURE NOTES :OCEAN WAVE THEORY 19)sin();,()sin()();,(tkxegtzxtkxchkhhzchkgtzxkzaatg 1tkxegtzxtkxchkhzchkgtzxkzaacossin);,(cossin)();,()cos();(tkxtxatkxtxasinsin);( LECTURE NOTES :OCEAN WAVE THEORY 20kCP/tkxkhhzkgtzxtkxkhhzkg
8、tzxaacossincosh)(cosh);,()sin(cosh)(cosh);,(T20)( tkxdtdtg 1)tanh(2khkgtkxtxtkxtxaasinsin);()cos();(2k022zgtT;zotx;kg2hz o x LECTURE NOTES :OCEAN WAVE THEORY 21Vtkxegtzxtkxegtzxkzakzacossin);,()sin();,(sinsin)cos(0000tkxezgpptkxezgppkzaakzaa)(022kzazxpeVVV/ 2121020dxgdlzE0gzppta12aaaPpkkCV)()()()()(
9、)(000220200kxtgxxzzezzxxkzadtxxxiii0224121aagEgE22)()(dtdzdtdxVp221agE LECTURE NOTES :OCEAN WAVE THEORY 22行行 波:波:两个驻波的叠加,波形向前传播。两个驻波的叠加,波形向前传播。驻驻 波:波:两个行波的叠加,波形上下振荡两个行波的叠加,波形上下振荡行波:行波:水深无限时流体质点作轨圆运动;水深无限时流体质点作轨圆运动; 水深有限时流体质点作椭圆运动。水深有限时流体质点作椭圆运动。 驻波:驻波:流体质点由波峰处的上下振荡,流体质点由波峰处的上下振荡, 发展至节点附近的水平振荡发展至节点附近
10、的水平振荡WATER WAVE OSCILLATION DEMONSTRATIONWATER WAVE OSCILLATION DEMONSTRATION LECTURE NOTES :OCEAN WAVE THEORY 23z=/2浅水波有限深水波深水波201h21201h21hzxx=x =/2波传播方向O水深对波形与流体质点运动的影响流场速度分布示意图 LECTURE NOTES :OCEAN WAVE THEORY 24L/4L/2NodeNodeAntinodeStructureIncident Wave水波遭遇直墙时,流场产生衍射入射波(红色)遭遇直墙后反射(蓝色)两者合成clap
11、otis(黑色)CLAPOTISCLAPOTIS DEMONSTRATION DEMONSTRATION Clapotis:驻波 LECTURE NOTES :OCEAN WAVE THEORY 25)tanh()tanh(2khkhghkhkg/2 hkh ) 1(,) 1(,khkgkhghk) 1(, 1)tanh() 1(,)tanh(khkhkhkhkh25. 12;8 . 02gCgTPkhkhghCkhkgkCPP)tanh()tanh(/) 1(,/) 1(,khkgCkhghCPP LECTURE NOTES :OCEAN WAVE THEORY 26)/(421kk )22
12、cos()22cos()22cos(2)cos()cos( 2121212121212211txkktxkktxkkatxkatxkaa)22cos(2txkaa112121/)/()(kkkCP21PPPPPPgCkhshkhCCdkdCkCdkkCdkC)(/)(22122aadkdkkCg/)/()(2121gCgC LECTURE NOTES :OCEAN WAVE THEORY 27gPCC2gPCC GROUP VELOCITY DEMONSTRATIONGROUP VELOCITY DEMONSTRATION LECTURE NOTES :OCEAN WAVE THEORY 28
13、 231231TLkMLTLLTMLkLTgkCP)()()(21kgkCP21,21, 021:31:0:TLM),(gfCP LECTURE NOTES :OCEAN WAVE THEORY 297/bHhH /h)(7khthHbhHb78. 02)(hhH2)(hhHUR/HhH /RU LECTURE NOTES :OCEAN WAVE THEORY 30 LECTURE NOTES :OCEAN WAVE THEORY 31),(0)()(211)(0)(21)(2)(0222hzorzzztgztzgtp LECTURE NOTES :OCEAN WAVE THEORY 321k
14、a)()3(3)2(2)1()()3(3)2(2)1(jjjj202200)21(21)21(1)21(1);,(zzzztzgtzgtgtyx02202222)(21)(2)(21)(2)(21)(2zzztzgtztzgttzgt LECTURE NOTES :OCEAN WAVE THEORY 33)()2(2) 1 ()()2(2) 1 (jjjj002z202200)21(21)21(1)21(1);,(zzzztzgtzgtgtyx02202222)(21)(2)(21)(2)(21)(2zzztzgtztzgttzgt00)()(2zjj,)1()1(1)(2)(2jjjjfzg
15、t,1)1()1(2)()(jjjjftg比较等式左右的比较等式左右的 LECTURE NOTES :OCEAN WAVE THEORY 34)(,)()(, )(,)(,)()()()()()()()()()()()()()()(02110000111212211121212222222ztztgztzgtzzgthzzzh 按以上摄动展开法可以获得各阶按以上摄动展开法可以获得各阶 满足的控制方程和边界条件以及满足的控制方程和边界条件以及 满足满足的波面方程。阶数愈高,推演愈繁复。下面给出的波面方程。阶数愈高,推演愈繁复。下面给出一一阶和二阶条件:阶和二阶条件:)0(, ,1)0(, ,)(
16、,0)0(,0)1()1(2)()()1()1(1)(2)(2)()(2zftgzfzgthzzzhjjjjjjjjjj)(,)(,)(,)(,)()()()()()(0100000111212112ztgzzgthzzzh一般形式作业:推导三阶条件作业:推导三阶条件 LECTURE NOTES :OCEAN WAVE THEORY )(,)()(, )(,)(,)()()()()()()()()()()()()()()(021110 1000111212211121212222222ztztgtgztzgtztgzgthzzzh二二 阶阶 速速 度度 势和波高势和波高 推推 导导tkxkhh
17、zkgtzxa 1,sincosh)(cosh);,()(二阶势控制方程和定解条件为一阶势为 LECTURE NOTES :OCEAN WAVE THEORY coscos)()(aagtkgx11 , sin)(2212 kgza , 1212cossin)()(thkhkgtzkgtxaa 213sin)(thkhkgtza , 1sin)(thkhkgza在z=0处, 一阶势各阶导数为)(2sin)0(, 12) 1 () 1 () 1 (2) 1 (2) 1 ()2(2)2(2tkxFztzgtztgzgta 将上述一阶导数代入 二阶势自由面条件 LECTURE NOTES :OCEA
18、N WAVE THEORY khchkgkhthkgkthkhgkkhthkgkggF222222222223123 212)(假定二阶势为)(2sin2)(22)2(tkxkhchhzkchGaFGkhgkth)(2242 满足Laplace 方程和水底条件 khchkhchkhgkshkhchkhchkhchkhchgkshkhchkhgkshkhkhchkhgkshkhgkthD24224 2222224322)()(2sin)224(22)2(2)2(2tkxGkhgkthzgta所以 LECTURE NOTES :OCEAN WAVE THEORY khshkhchgkthkhkhs
19、hkhchkhgkshkhchkhchkhchkgDFG4432222838234223)(2sin)(28342)2(tkxkhshhzkcha所以2cos2432cos2432cos243132424220)2(khshkhchchkhkkhshkhchkthkhkhshkhchgtgaaaz2coscos)sin(cos22cos243)0(,)(2111)2(2)2(02222222232) 1 () 1 () 1 (2) 1 ()2()2( kthkhkhthkgkhshkhchchkhkztztgtgaaa带入二阶波高表达式 LECTURE NOTES :OCEAN WAVE TH
20、EORY khshkthkhkhshkhchkthkhkkhchkhchkgthkhkkhthkgaaaaaa222222242)1 (4222222222222)2(0 khshkhchchkhkchkhshkhkhshkkhshkhchchkhkkthkhkhchkgkhshkhchchkhkkthkhkhthkgkhshkhchchkhkaaaaaaaaa322223222222322222232)2(2) 12(41242432142432)1 (42432cos) 12(4223222)2(khshkhchchkhkkhshkaa LECTURE NOTES :OCEAN WAVE
21、THEORY 4031864333833331393164122121341221832322623243222223222222211cos)(cos)(sincosh)(cosh)()(cos)(sin)(cosh)(cossin)cosh()(cosh)()()()()()(kkAkkhhzkkkhshkhzkkAkhhzkAaaaaaaatkxkhgANOTEa)coth(:刘应中,5.1 LECTURE NOTES :OCEAN WAVE THEORY 41(m m)2nd Order Stokes wave, H = 6 m, T = 8 sec. and h = 10 m LEC
22、TURE NOTES :OCEAN WAVE THEORY )sin()();,(tkxchkhhzchkgtzxa)sin()()cos()(tkxshkhhzshkzwtkxshkhhzchkxuaa有限水深速度势 1,ch2kh 1,h)chk(z 1,khz/h),kh(1h)k(zh)shk(zkhshkh , )sin()()cos(tkxhzkhghhwtkxghhuaa1速度为考虑浅水波情形 ,于是有水平速度u 沿水深为常数,垂向速度为O(kh)1,比水平速度小一个量阶,可忽略。 LECTURE NOTES :OCEAN WAVE THEORY 43zpgzwwxwutwxpz
23、uwxuutuzwxu110pFVVtVV)(0 LECTURE NOTES :OCEAN WAVE THEORY 44zpgzwwxwutwxpzuwxuutu11),(01txcgzpzpguw )(0zgppxgxpxgxuutu0ppz000dzzwxuzwxuh)(00zuxwzu无旋水平速度u沿水深为常数 LECTURE NOTES :OCEAN WAVE THEORY 4500tudzxhdxdaxaxfdxdbxbxfdttxfdttxfdxdxbxaxxbxa)(;)(;);();()()()()(zhzhhzhhzwdzzwxhuxuudzxdzxu000000 xgxuu
24、tu0)(0)(0)(0)(00ohzhzzzwxhuxhzDtDwxutzDtD 0)(00dzzwxuzwxuh0000000zzhzzhhhhhuwdzdzudzuuwwxzxxx000zzhzzhhuuwwtxx LECTURE NOTES :OCEAN WAVE THEORY 46)(2Oxuu00tudzxh)()()(huxhuxdzuxh000 xgxuutu0)(huxt0 xgtu最终,得最终,得 以上两式方程组为浅水运动基本方程,是浅水长波推演与数值计算的以上两式方程组为浅水运动基本方程,是浅水长波推演与数值计算的基础。基础。 LECTURE NOTES :OCEAN W
25、AVE THEORY 47002202222022xghtxughtu代入浅水基本方程,如考虑等深度浅水情形代入浅水基本方程,如考虑等深度浅水情形 , 对于浅水,由于相速度对于浅水,由于相速度 ,于是,于是ghC )(0consth ,tCgghtCChth2ghghghC221gghCh2xCgghxCChxh20000211ChghhgC)()(0)(huxt0 xgtu LECTURE NOTES :OCEAN WAVE THEORY 则不难改造浅水运动方程成为则不难改造浅水运动方程成为00222022222022xCtxuCtu这是典型的波动方程,表明浅水运动是波动,其一般解为这是典型
展开阅读全文