纳米粒子化学制备方法课件.pptx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《纳米粒子化学制备方法课件.pptx》由用户(三亚风情)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 纳米 粒子 化学 制备 方法 课件
- 资源描述:
-
1、纳米粒子化学制备方法FePt纳米粒子表面存在原子台阶V2O5纳米晶体内部原子排列整齐球形PMMA乳液聚合法,与无机物不同,高分子大多数是无定形或结晶度比较低。表面能最低。Ni链蒸发链状的,高温下,由许多粒子边界融合连接而成。立方体形,与FCC结构有关,由(100)面包围。表面能(110)(100)(111)Ag液相法 Ag 液相法多面体形,主要由(111)包围Ag 三棱柱形和球形面,由(111)、 (110)包围。三棱柱形和六棱柱形Ag 液相法45 min; 175 13 nm17 min; 115 9 nm14 min; 95 7 nm纤维锌矿ZnO四脚架锌粉蒸发法制备生长方向001vapo
2、ursolid (VS)生长模式缺陷成核。液氮蒸发源漏斗蒸发源真空泵隋性气体真空室1.3.1蒸发-冷凝法 蒸发冷凝法是指在高真空的条件下,金属试样经蒸发后冷凝。试样蒸发方式包括电弧放电产生高能电脉冲或高频感应等以产生高温等离子体,使金属蒸发。蒸发冷凝法制备的超微颗粒具有如下特征:高纯度;粒径分布窄;良好结晶和清洁表面;粒度易于控制等。在原则上适用于任何被蒸发的元素以及化合物。蒸发-冷凝法的典型装置。 欲蒸发的物质(例如,金属、CaF2、NaCl、FeF2等离子化合物、过渡族金属氮化物及氧化物等)置于柑蜗内通过钨电阻加热器或石墨加热器等加热装置逐渐加热蒸发,产生元物质烟雾,由于惰性气体的对流,烟
3、雾向上移动,并接近充液氮的冷却棒(冷阱, 77K)。在蒸发过程中,由元物质发出的原子与惰性气体原子碰撞因迅速损失能量而冷却,这种有效的冷却过程在元物质蒸汽中造成很高的局域过饱和,这将导致均匀成核过程。 因此,在接近冷却棒的过程中,元物质蒸汽首先形成原子簇然后形成单个纳米微粒。最后在冷却棒表面上积聚起来,用聚四氛乙烯刮刀刮下并收集起来获得纳米粉。特点:加热方式简单,工作温度受坩埚材料的限制,还可能与坩埚反应。所以一般用来制备Al、Cu、Au等低熔点金属的纳米粒子。1.3.1蒸发-冷凝法(1)电阻加热法: 以高频感应线圈为热源,使坩埚内的导电物质在涡流作用下加热,在低压惰性气体中蒸发,蒸发后的原子
4、与惰性气体原子碰撞冷却凝聚成纳米颗粒。特点:采用坩埚,一般也只是制备象低熔点金属的低熔点物质。1.3.1蒸发-冷凝法(2) 高频感应法 此方法的原理如图, 用两块金属板分别作为阳极相阴极,阴极为蒸发用的材料,在两电极间充入Ar气(40250Pa),两电极问施加的电压范围为0.31.5kv。由于两极间的辉光放电使Ar离子形成,在电场的作用下Ar离子冲击阴极 靶材表面,使靶材原产从其表面蒸发出来形成超微粒子并在附着面上沉积 下来。在附着面上沉积下来。粒子的大小及尺寸分布主要取决于两电极间的 电压、电流和气体压力。靶材的表面积愈大,原子的蒸发速度愈 高超微粒的获得量愈多。用溅射法制备纳米微粒有以下优
5、点:(1) 可制备多种纳米金属,包括高熔点和低熔点金属。常规的热蒸发法只能适用于低熔点金属;(2)能制备多组元的化合物纳米微粒,如A152Ti48、Cu91Mn9及ZrO2等;(3) 通过加大被溅射的阴极表面可提高纳米微粒的获得量。1.3.1蒸发-冷凝法(3) 溅射法 该制备法的基本原理是:在高真空中蒸发的金属原子在流动的油面内形成极超微粒子,产品为含有大量超微粒的糊状油, 如图。 高真空中的蒸发是采用电子束加热, 当水冷铜坩埚中的蒸发原料被加热蒸发时,打开快门,使蒸发物镀在旋转的圆盘表面上形成了纳米粒子。含有纳米粒子的油被甩进了真空室沿壁的容器中,然后将这种超微粒含量很低的油在真空下进行蒸馏
6、使它成为浓缩的含有纳米粒子的糊状物。1.3.1蒸发-冷凝法(4)流动液面真空蒸镀法此方法的优点有以下几点: 可制备Ag、AuPd、Cu、Fe、Ni、Co、AI、In等纳米颗粒,平均粒径约3nm,而用惰性气体蒸发法很难获得这样小的微粒; 粒径均匀分布窄, 如图 纳米颗粒分散地分布在油中。 粒径的尺寸可控,即通过改变蒸发条件来控制粒径大小,例如蒸发速度、油的粘度、圆盘转速等。圆盘转速高蒸发速度快油的粘度高均使粒子的粒径增大,最大可达8 nm。1.3.1蒸发-冷凝法(4)流动液面真空蒸镀法的优点 此法是通过碳棒与金属相接触,通电加热使金属熔化金属与高温碳棒反应并蒸发形成碳化物超微粒子。 右图为制备S
7、iC超微粒于的装置图。碳棒与Si板(蒸发材料)相接触,在蒸发室内充有Ar或He气、压力为110kP, 在碳棒与Si板间通交流电(几百A)Si板被其下面的加热器加热,随Si板温度上升, 电阻下降,电路接通,当碳棒温度达白热程度时,Si板与碳棒相接触的部位熔化当碳棒温度高于2473K时在它的周围形成了SiC超微粒的“烟”,然后将它们收集起来得到SiC细米颗粒。 用此种方法还可以制备Cr, Til, V, Zr、Hf, Mo, Nb, Ta和w等碳化物超微粒子。1.3.1蒸发-冷凝法(5)通电加热蒸发法 此制备方法是采用RF(射频)等离子与DC直流等离子组合的混合方式来获得纳米粒子, 如图 直流输入
8、等离子用气体原料+载气反应用气体高频线圈分解用气体水入口(+)(-)由图中心石英管外的感应线圈产生高频磁场(几MHz)将气体电离产生RF等离子体内载气携带的原料经等离子体加热、反应生成纳米粒子并附着在冷却壁上。 DC(直流)等离子电弧束用来防止RF等离子弧受干扰,因此称为混合等离子”法。1.3.1蒸发-冷凝法(6) 混合等离子法特点: 产生RF等离子体时没有采用电极,不会有电极物质(熔化或蒸发)混人等离子体而导致等离子体中含有杂质,因此钠米粉末的纯度较高;等离子体所处的空间大,气体流速比DC等离子体慢,致使反应物质在等离子空间停留时间长、物质可以充分加热和反应;可使用非惰性的气体(反应性气体)
9、,因此可制备化合物超微粒子,即混合等离法不仅能制备金属钠米粉末,也可制备化合物钠米粉末,使产品多样化。1.3.1蒸发-冷凝法(6) 混合等离子法 (LICVD) 法制备超细微粉是近几年兴起的。激光束照在反应气体上形成了反应焰,经反应在火焰中形成微粒,由氩气携带进入上方微粒捕集装置。该法利用反应气体分子(或光敏剂分子)对特定波长激光束的吸收,引起反应气体分子激光光解(紫外光解或红外多光于光解)、激光热解、激光光敏化和激光诱导化学合成反应,在一定工艺条件下(激光功率密度、反应池压力、反应气体配比和流速、反应温度等),获得纳米粒子空间成核和生长。激光入射窗往捕集装置反应焰激光束反应气体氩气激光挡板1
10、.3.1蒸发-冷凝法(7)激光诱导化学气相沉积 (LICVD)激光辐照硅烷气体 分子(SiH4)时硅烷分子很容易热解热解生成的气构硅Si(g)在一定温度和压力条件下开始成核和生长,形成纳米微粒。特点:该法具有清洁表面、粒子大小可精确控制、无粘结、粒度分布均匀等优点,并容易制备出几纳米至几十纳米的非晶态或晶态纳米微粒。1.3.1蒸发-冷凝法(7)激光诱导化学气相沉积 (LICVD) 这种方法主要是通过有机高分子热解获得纳米陶瓷粉体。其原理是利用高纯惰性气作为载气,携带有机高分子原料,例如六甲基二硅烷进入钼丝炉,温度为11001400 、气氛的压力保持在110 mbar的低气压状态,在此环境下原料
11、热解形成团簇进一步凝聚成纳米级颗粒最后附着在一个内部充满液氮的转动的衬底上, 经刮刀刮下进行纳米粉体收集,示意图如图所示。这种方法优点足产量大,颗粒尺寸小,分布窄。衬底炉子刮刀工作室针阀漏斗原料气体载气1.3.1蒸发-冷凝法(8)化学蒸发凝聚法(CVC) CVC装置示意图该方法适用于制备纳米金属和合金粉体。基木原理是先将金属丝固定在一个充满惰性气体(50bar)的反应室中,丝的两端卡头为两个电极,它们与一个大电容相联结形成回路,加15kV的高压、金属丝500一800kA下进行加热融断后在电流停止的一瞬间,卡头上的高压在融断处放电,使熔融的金属在放电过程中进一步加热变成蒸汽,在惰性气体F碰撞形成
12、纳米粒子沉降在容器的底部,金属丝可以通过一个供丝系统自动进入两卡头之间从而使上述过程重复进行。如图所示。1.3.1蒸发-冷凝法(9)爆炸丝法1.3.2激光聚集原子沉积法 用激光控制原子束在纳米尺度下的移动,使原子平行沉积以实现纳米材料的有目的的构造。激光作用于原子束通过两个途径,即瞬时力和偶合力。在接近共振的条件下,原子束在沉积过程中被激光驻波作用而聚集,逐步沉积在衬底(如硅)上,形成指定形状,如线形。1.3.3非晶晶化法例如,将Ni80P20非晶合金条带在不同温度下进行等温热处理,使其产生纳米尺寸的合金晶粒。纳米晶粒的长大与其中的晶界类型有关。 非晶晶化法: 采用快速凝固法将液态金属制备非晶
13、条带,再将非晶条带经过热处理使其晶化获得纳米晶条带的方法。用非晶晶化法制备的纳米结构材料的塑性对晶粒的粒径十分敏感、只有晶粒直径很小时,塑性较好否则材料变得很脆。因此,对于某些成核激活能很小,晶粒长大激活能大的非晶合金采用非晶晶化法,才能获得塑性较好的纳米晶合金。 特点工艺较简单, 化学成分准确。液态金属非晶条带热处理1.3.4机械球磨法 机械球磨法以粉碎与研磨为主体来实现粉末的纳米化,可以制备纳米纯元素和合金。1970年,美国INCO公司的Benjamin为制备Ni基氧化物粒子弥散强化合金而研制成机械合金化法。该法工艺简单,制备效率高,能制备出常规方法难以获得的高熔点金属合金纳米材料。近年来
14、,发展出助磨剂物理粉碎法及超声波粉碎法,可制得粒径小于100nm的微粒。1.3.6原子法 扫描隧道显微镜(STM),以空前的分辨率为我们揭示了一个“可见”的原子、分子世界,已成为一个可排布原子的工具。1990年人们首次用STM进行了原子、分子水平的操作。STM由STM头部,电子学处理部分,减震系统以及计算机系统(含软件)组成。1. 1. 纳米粒子的制备纳米粒子的制备1.1化学制备方法 1.1.1化学沉淀法 其特点是简单易行,但纯度低,颗粒半径大。适合制备氧化物。 (1)共沉淀法 在含有多种阳离子的溶液中加入沉淀剂,使金属离子完全沉淀的方法称为共沉淀法。 (2)均匀沉淀法 在溶液中加入某种能缓慢
15、生成沉淀剂的物质,使溶液中的沉淀均匀出现,称为均匀沉淀法。本法克服了由外部向溶液中直接加入沉淀剂而造成沉淀剂的局部不均匀性。 (3)多元醇沉淀法 许多无机化合物可溶于多元醇,由于多元醇具有较高的沸点,可大于100,因此可用高温强制水解反应制备纳米颗粒。 (4)沉淀转化法 本法依据化合物之间溶解度的不同,通过改变沉淀转化剂的浓度、转化温度以及表面活性剂来控制颗粒生长和防止颗粒团聚。沉淀转化法工艺流程短,操作简便,但制备的化合物仅局限于少数金属氧化物和氢氧化物。ZrOCl2.8H2OYCl3洗涤、脱水、防团聚ZrOCl2.8H2O+YCl3NH4OHZrOCl2 + 2NH4OH + H2 Zr(
16、OH)4 + 2NH4ClYCl3 + 3NH4OH Y(OH)3 + 2NH4ClZr(OH)4 + n Y(OH)3 按比例混合Zr1-xYxO2 煅烧1. 原料混合2. 加沉淀剂3. 沉淀反应控PH、浓度搅拌、促进形核、控生长4. 洗涤、脱水、防团聚5. 煅烧稳定氧化锆陶瓷的化学沉淀法制备 1.1.2化学还原法 (1)水溶液还原法 采用水合肼、葡萄糖、硼氢化钠(钾)等还原剂,在水溶液中制备超细金属粉末或非晶合金粉末,并利用高分子保护剂PVP (聚乙烯基吡咯烷酮)阻止颗粒团聚及减小晶粒尺寸。其优点是获得的粒子分散性好,颗粒形状基本呈球形,过程可控制。 (2)多元醇还原法 该工艺主要利用金属
17、盐可溶于或悬浮于乙二醇(EG)、一缩二乙二醇(DEG)等醇中,当加热到醇的沸点时,与多元醇发生还原反应,生成金属沉淀物,通过控制反应温度或引入外界成核剂,可得到纳米级粒子。 (3)气相还原法 本法也是制备微粉的常用方法。例如,用15%H2-85%Ar还原金属复合氧化物制备出粒径小于35nm的CuRh,g-Ni0.33Fe0.66等。 (4)碳热还原法 碳热还原法的基本原理是以炭黑、SiO2为原料,在高温炉内氮气保护下,进行碳热还原反应获得微粉,通过控制工艺条件可获得不同产物。目前研究较多的是Si3N4、SiC粉体及SiC-Si3N4复合粉体的制备。1.1.3溶胶凝胶法 (1)溶胶凝胶法基本原理
18、 在常温或近似常温下把金属醇盐溶液加水分解,同时发生缩聚反应制成溶胶,再进一步反应形成凝胶并进而固化,然后经低温热处理而得到无机材料的方法。由于加热的温度远远低于氧化物的融化温度,所以被称为低温合成法。也由于利用了加水分解、缩聚等化学反应,所以又可叫做玻璃的化学合成法。(2)溶胶-凝胶法工艺流程 (3)溶胶凝胶法的应用 溶胶凝胶法按其反应机理可分为三类,即传统胶体型、无机聚合物型(金属醇盐型)和络合物型。主要应用于如下几个方面:粉体原材料。线型材料。薄膜或涂层材料。复合材料。 (3)溶胶凝胶法的优缺点 优点: 操作温度远低于玻璃熔融温度,节约能源,使得材料制备过程易于控制; 制备的材料各组分间
19、高度均匀、组成范围广且可以大幅度变化; 工艺简单,易于工业化,成本低,应用灵活; 可提高生产效率; 可保证最终产品的纯度; 制备的气凝胶是一种结构可控的新型轻质纳米多孔非晶固态材料,具有许多特殊性质,因而蕴藏着广阔的应用前景。缺点: a. 烘干后的球形凝胶颗粒自身烧结温度低,凝胶颗粒之间烧结性差, 块体材料烧结性不好; b. 干燥时收缩大。 水含量的影响水含量的影响 水解反应温度的影响水解反应温度的影响 烧结温度的影响烧结温度的影响 热处理环境及催化剂热处理环境及催化剂等因素的影响等因素的影响 干燥控制化学添加剂干燥控制化学添加剂的影响的影响 采用现代加热方式以采用现代加热方式以获得无开裂块状
20、玻璃获得无开裂块状玻璃 采用不同的溶剂或者采用不同的溶剂或者混合溶剂以消除开裂混合溶剂以消除开裂 (4)溶胶凝胶法制备无开裂块状材料的防开裂研究1.1.4 水热法1982年开始用水热反应制备纳米粉末。比如 Al(OH)3 Al203H2O比如 FeTiO3+K0H K2O.nTiO2比如 ZrSiO4+NaOH ZrO2+Na2SiO3典型反应式: mM十nH2O MmOn+H2 其中M可为铬、铁及合金等比如 MexOy+yH2 xMe+yH2O 其中Me可为铜、银等例如 KF+MnCl2 KMnF2设备 1.1.5 溶剂热合成法 用有机溶剂(如:苯、醚)代替水作介质,采用类似水热合成的原理制
展开阅读全文