18.1勾股定理应用折叠问题和最短路径问题课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《18.1勾股定理应用折叠问题和最短路径问题课件.ppt》由用户(三亚风情)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 18.1 勾股定理 应用 折叠 问题 路径 课件
- 资源描述:
-
1、利用勾股定理求解几何体的最短路线长利用勾股定理求解几何体的最短路线长利用勾股定理求折叠问题利用勾股定理求折叠问题勾股定理习题课(也称作勾股定理)(也称作勾股定理)勾股定理:勾股定理:如果直角三角形的两直角边长分别为a、b,斜边长为c,那么a + b = c222(2)使用前提是直角三角形使用前提是直角三角形(3)分清直角边、斜边分清直角边、斜边注意变式注意变式: (1) a = c b a= c b 等等.22222勾勾股股弦弦ACBab c勾股弦股弦222返回 方程思想方程思想 直角三角形中,当无法已知两边求第三直角三角形中,当无法已知两边求第三边时,应采用间接求法:灵活地寻找题中边时,应采
2、用间接求法:灵活地寻找题中的等量关系,利用勾股定理列方程。的等量关系,利用勾股定理列方程。1、在直角三角形ABC中,C=90,()已知:,求和()已知,求和()已知,求和、直角的两边长为和,求第三边的长度164或6(4)已知a比b大1,求和(5)两直角边和是10,三角形面积是9,求c 分类思想分类思想 1.直角三角形中,已知两边长是直角边、直角三角形中,已知两边长是直角边、斜边不知道时,应分类讨论。斜边不知道时,应分类讨论。 2.当已知条件中没有给出图形时,应认真当已知条件中没有给出图形时,应认真读句画图,避免遗漏另一种情况。读句画图,避免遗漏另一种情况。 例例2.三角形三角形ABC中中,AB
3、=10,AC=17,BC边边上的高线上的高线AD=8,求求BCDDABCABC1017817108例例1、如图,一块直角三角形的纸片,两如图,一块直角三角形的纸片,两直角边直角边AC=6,BC=8。现将直角边。现将直角边AC沿直线沿直线AD折叠,使它落在斜边折叠,使它落在斜边AB上,上,且与且与AE重合,求重合,求CD的长的长 ACDBE第8题图x6x8-x46练习练习:三角形三角形ABC是等腰三角形是等腰三角形AB=AC=13,BC=10,将,将AB向向AC方向方向对折,再将对折,再将CD折叠到折叠到CA边上,折痕为边上,折痕为CE,求三角形,求三角形ACE的面积的面积ABCDADCDCAD
4、1E13512512-x5xx8例例1:折叠矩形折叠矩形ABCD的一边的一边AD,点点D落在落在BC边上的点边上的点F处处,已知已知AB=8CM,BC=10CM,求求 (1) CF ( 2) EC. (3) AEABCDEF810106X8-X48-X F E D C B AG(1)求求BE(2)求求AEF面积面积(3)求)求EF长长(4)连接连接DG,求求DFG面积面积 利用勾股定理利用勾股定理求解几何体的最短路线长求解几何体的最短路线长例例1、如图,是一个三级台阶,它的每一级的长、宽和、如图,是一个三级台阶,它的每一级的长、宽和高分别等于高分别等于5cm,3cm和和1cm,A和和B是这个台
展开阅读全文