高中数学教案高一数学第二章(第28课时)函数复习小结.doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《高中数学教案高一数学第二章(第28课时)函数复习小结.doc》由用户(欢乐马)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高中 数学教案 数学 第二 28 课时 函数 复习 小结 下载 _其他_数学_高中
- 资源描述:
-
1、高中数学教案 第二章 函数(第28课时) 课 题:函数复习小结(一)教学目的: 1.了解本章知识网络结构.2.进一步熟悉函数有关概念.3.熟悉二次函数的基础知识及运用.4.进一步认识函数思想.5.加强数学应用意识,提高学生分析问题、解决问题的能力.教学重点:突出本章重、难点内容教学难点:通过例题分析突出函数思想及数形结合思想授课类型:复习课课时安排:1课时教 具:多媒体、实物投影仪教学过程: 一、复习引入:前面一段,我们一起研究了函数的有关概念及问题,并掌握了一定的分析问题、解决问题的方法,这一节,我们开始对本章小结,使大家进一步熟悉函数的有关概念、基本方法与基本的解题思想;并通典型例题分析进
2、一步提高大家的分析问题、解决问题的能力.二、本章知识网络结构:三、深刻理解函数的有关概念:概念是数学理论的基础、概念性强是中学数学中函数理论的一个显著特征,集合,函数三要素(对应法则、定义域、值域);反函数;函数的单调性,最大(小)值等是函数有关概念的重要内容.本章学习的内容中数学概念较多,正确地理解数学概念在于准确把握概念的本质特征.1.映射的定义,就明确如下几点(1)映射f:AB说的是两个集合A与B间的一种对应,两个集合是有序.(2)映射必须是“多对一”或“一对一”的对应,即允许集合A中不同元素在集合B中有相同的象,但不要求B中的元素在A中都有原象,有原象也不要求惟一,象集可以是B的真子集
3、.(3)映射所涉及两个集合A、B(均非空),可以是数集,也可以是点集或其他类元素构成的集合.2.函数的概念在映射的基础上理解函数概念,应明确:(1)函数是一种特殊的对应,它要求是两个集合必须是非空数集;函数y=f(x)是“y是x的函数”这句话的数学表示,其中x是自变量,y是自变量x的函数,f是表示对应法则,它可以是一个解析式,也可以是表格或图象,也有的只能用文字语言叙述.(2)函数三要素是定义域,对应法则和值域,而定义域和对应法则是起决定作用的要素,因为这二者确定后,值域也就相应得到确定,因此只有定义域和对应法则二者完全相同的函数才是同一函数.(3)确定函数定义域是函数这部分所涉及的重要问题之
4、一,应会求各种函数的定义域,若为实际问题还应注意实际问题有意义.3.函数的单调性函数的单调性是函数重要概念之一,应明确:(1)它是一个区间概念,即函数的单调性是针对定义域内的区间而言的,谈到函数的单调性必须指明区间(可以是定义域,也可以是定义域内某个区间),例如函数y=在(-,0)上是减函数,在(0,+)上也是减函数,但决不能讲函数y=是减函数.(2)用函数单调性定义来确定函数在某区间是增函数还是减函数的一般方法步骤是:取值作差化积定号.(3)由函数单调性的定义知,当自变量由小到大,函数值也由小到大,则为增函数,反之,为减函数;由函数图象的走向十分直观反映函数变化趋势,当函数的图象(曲线)从左
5、到右是逐渐上升的,它是增函数,反之为减函数.4.反函数反函数是函数部分重要概念之一,应明确:(1)对于任意一个函数y=f(x)不一定有反函数,如果有反函数,那么原函数y=f(x)与它的反函数是互为反函数.(2)原函数的定义域是反函数的值域,原函数的值域是反函数的定义域,在求反函数时,应先确定原函数的值域.(3)求反函数的步骤是“一解”“二换”.所谓一解,即是首先由给出原函数的解析式y=f(x),反解出用y表示x的式子x=f(y);二换,即是将x=f(y)中的x,y两个字母互换,解到y=f(x)即为所求的反函数(即先解后换).当然,在同一直角坐标系中,函数y=f(x)与x=f(y)是表示同一图象
6、,y=f(x)与y=f(x)的图象关于直线y=x对称.(4)一般的偶函数不存在反函数,奇函数不一定存在反函数.(5)原函数与其反函数在其对称区间上的单调性是一致的.5方法总结.相同函数的判定方法:定义域相同且对应法则相同.函数表达式的求法:定义法;换元法;待定系数法.反函数的求法:递解x,互换x、y,注明反函数的定义域(即原函数的值域).函数的定义域的求法:布列使函数有意义的自变量的不等关系式,求解即可求得函数的定义域.常涉及到的依据为分母不为0;偶次根式中被开方数不小于0;对数的真数大于0,底数大于零且不等于1;零指数幂的底数不等于零;实际问题要考虑实际意义等.函数值域的求法:配方法(二次或
7、四次);判别式法;反函数法;换元法;不等式法;函数的单调性法.单调性的判定法:设x,x是所研究区间内任两个自变量,且xx;判定f(x)与f(x)的大小;作差比较或作商比较.奇偶性的判定法:首先考察定义域是否关于原点对称,再计算f(-x)与f(x)之间的关系:f(-x)=f(x)为偶函数;f(-x)=-f(x)为奇函数;f(-x)-f(x)=0为偶;f(x)+f(-x)=0为奇;f(-x)/f(x)=1是偶;f(x)f(-x)=-1为奇函数.图象的作法与平移:据函数表达式,列表、描点、连光滑曲线;利用熟知函数的图象的平移、翻转、伸缩变换;利用反函数的图象与对称性描绘函数图象.函数的应用举例(实际
展开阅读全文