书签 分享 收藏 举报 版权申诉 / 63
上传文档赚钱

类型第十二章目标识别课件.ppt

  • 上传人(卖家):三亚风情
  • 文档编号:2869336
  • 上传时间:2022-06-06
  • 格式:PPT
  • 页数:63
  • 大小:6.26MB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《第十二章目标识别课件.ppt》由用户(三亚风情)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    第十二 目标 识别 课件
    资源描述:

    1、二章目标识别二章目标识别目标识别目标识别怎样识别图像中物体,如汽车、牛等?目标识别的应用目标识别的应用难点之一难点之一: : 如何鲁棒识别?如何鲁棒识别?类内差异(类内差异( )类间相似性(类间相似性( )难点之二:计算量大难点之二:计算量大一幅图像中像素个数多,目前每秒约产生像素的图像视频数据。 图片搜索中已有几十亿幅图像 全球数字照相机一年产生亿张以上的图片(年) 全球一年销售约亿部照相手机()人的物体识别能力是强大的 灵长类动物约使用大脑皮层的一半来处理视觉信息 可以识别种物体 物体姿态可允许度以上的自由度。难点之三:如何在小样本条件下学习难点之三:如何在小样本条件下学习物体识别方法物体

    2、识别方法检测(). 不检测表示() 颜色、纹理、边缘、梯度、局部特征、深度、运动等等。分类( ) 近邻() 神经网络() 支持向量机() (等) 隐马尔科夫模型()其他生成学习( ). 判别学习 ( )生成学习生成学习 . . 判别学习判别学习两种分类器学习模式生成学习目标是学习到符合训练数据的类别模型 如算法( )判别学习在训练阶段即考虑类别之间的判别信息包括 (), , (), (), (), .判别学习算法比生成学习算法表现出更好的分类性能。判别学习方法判别学习方法人脸检测与识别人脸检测与识别13. . 物体检测物体检测 , ., .基于二分类器14物体检测物体检测 在复杂背景下,通过滑

    3、动窗口( )搜索感兴趣的物体。物体检测物体检测. 获取训练数据. 提取特征. 训练分类器. 利用分类器进行检测人脸检测(人脸检测( )人脸检测算法(基于)人脸检测算法人脸检测算法()滤波器设计滤波器设计是一种迭代算法,其核心思想是针对同一个训练集训练不同的分类器(弱分类器),然后把这些弱分类器集合起来,构成一个更强的最终分类器(强分类器)。其算法本身是通过改变数据分布来实现的,它根据每次训练集之中每个样本的分类是否正确,以及上次的总体分类的准确率,来确定每个样本的权值。将修改过权值的新数据集送给下层分类器进行训练,最后将每次训练得到的分类器最后融合起来,作为最后的决策分类器。使用分类器可以排除

    4、一些不必要的训练数据特徵,并将关键放在关键的训练数据上面。 学习目标:选择能够最有效地区分人脸与非人脸的矩形特征及其阈值组合弱分类器( ),得到更为精确的集成分类器( )。弱分类器:性能仅比随机分类稍好根据矩形特征定义弱分类器:算法步骤算法步骤初始给每个训练样本以同等权重循环执行以下步骤:根据当前加权训练集,选择最佳弱分类器提升被当前弱分类器错分的训练样本的权重按照各弱分类器分类精度对其加权,然后将各个弱分类器形成线性组合,得到最终分类器。算法中的每一次迭代如下: 评价每一个样本上的每一种矩形特征 为每一种矩形特征选择最佳分类阈值选择最优的矩形特征及其阈值组合 改变样本权重计算复杂度: ()

    5、:特征数,:样本数, :阈值数级联分类器(级联分类器( )训练级联分类器训练级联分类器检测算法总体流程用正样本,反样本学习得到层(共使用个特征)级联分类获得实时性人脸检测结果人脸检测结果人脸检测结果人脸检测结果人脸检测结果人脸检测结果. 人脸识别( ) ., : . , : 图像图像 像素的集合像素的集合将由个像素构成的图像视为维空间中的点最近邻分类器最近邻分类器使用主成分分析技术( , )减少维数主成分分析主成分分析(, 变换变换)降低特征向量的维数获得最主要特征分量,减少相关性;避免维数灾难主成分分析主成分分析(, 变换变换)主成分分析主成分分析(, 变换变换)学习. 计算训练图像的均值和

    6、协方差矩阵. 计算协方差矩阵的特征值,取前个最大特 征值对应的特征矢量. 将图像投影到维特征空间 ()。识别. 将测试图像投影到. 在特征图像上执行分类.: 训练图像方法的不足可能损失重要的细节信息方差最小的方向也可能是重要的没有考虑判别任务希望得到最具判别能力的特征但判别能力最佳并不等同于方差最大:类特定的线性投影 的线性判别函数的线性判别函数 的线性判别函数的线性判别函数示例( )基于的识别基于的识别训练: 根据训练图像,利用或方法确定投 影矩阵 将每个训练图像投影到子空间(或)。识别: 将测试图像投影到或。 子空间中距离测试图像最近的训练图像对应的类别为识别结果。:人脸合成平均人脸平均就是美:人脸合成:人脸合成:人脸合成:人脸合成:人脸合成,人脸合成软件:人脸合成,人脸合成软件手动标定人脸:人脸合成,人脸合成软件手动标定人脸:人脸合成,人脸合成软件产生多张合成图像,随机或者平均输出Project5:人脸合成Task:利用人脸检测算法,将上述过程改为自动完成,实现自动人类合成。

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:第十二章目标识别课件.ppt
    链接地址:https://www.163wenku.com/p-2869336.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库