书签 分享 收藏 举报 版权申诉 / 64
上传文档赚钱

类型测量学第五章测量误差的基本知识课件.ppt

  • 上传人(卖家):三亚风情
  • 文档编号:2869027
  • 上传时间:2022-06-06
  • 格式:PPT
  • 页数:64
  • 大小:1.43MB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《测量学第五章测量误差的基本知识课件.ppt》由用户(三亚风情)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    测量学 第五 测量误差 基本知识 课件
    资源描述:

    1、第五章第五章 测量误差的基本知识测量误差的基本知识5.1 5.1 测量误差概述测量误差概述5.2 5.2 偶然误差的统计特征偶然误差的统计特征5.3 5.3 观测值的最或然值及改正数。观测值的最或然值及改正数。5.4 5.4 观测值的精度评定观测值的精度评定5.5 5.5 误差传播定律误差传播定律5.6 5.6 加权平均值及其中误差加权平均值及其中误差5.7 5.7 最小二乘原理与测量平差最小二乘原理与测量平差5.1测量误差概述v定义定义对于某个观测量,观测值与理论值之间的差值称为测量误差。v特点特点1)1)测量的过程中始终伴随着误差;测量的过程中始终伴随着误差;2)2)测量误差可以通过一定的

    2、方法得到减小,测量误差可以通过一定的方法得到减小,但无法消除;但无法消除;3)3)误差误差错误。错误。5.1测量误差概述(1 1)测量误差产生的原因)测量误差产生的原因v仪器的误差仪器的误差v人的原因产生的误差人的原因产生的误差v外界环境的影响外界环境的影响5.1测量误差概述v(2 2)测量误差的分类)测量误差的分类根据产生的原因和对观测结果影响性质根据产生的原因和对观测结果影响性质的不同,测量误差分为的不同,测量误差分为系统误差系统误差和和偶然偶然误差误差5.1测量误差概述v系统误差系统误差在相同的观测条件下,对某一个观测量进行一系列的在相同的观测条件下,对某一个观测量进行一系列的观测,如果

    3、出现的误差在符号和数值上都相等,或按观测,如果出现的误差在符号和数值上都相等,或按一定的规律变化,则称为一定的规律变化,则称为“系统误差系统误差”。v偶然误差偶然误差在相同的观测条件下,对某量进行一系列观测,如果在相同的观测条件下,对某量进行一系列观测,如果误差出现的符号和数值大小都不相同,从表面上看也误差出现的符号和数值大小都不相同,从表面上看也没有一定的规律性,则称为没有一定的规律性,则称为“偶然误差偶然误差”。5.1测量误差概述(3 3)测量误差的处理原则)测量误差的处理原则v对于系统误差,采用高精度的测量仪器和数学模型改正的方法v对于偶然误差,采用多次测量取平均值的方法v另外为防止错误

    4、和提高观测精度,均需要进行多余必要观测数的“多余观测”。不精密(随机误差大)不精密(随机误差大) 准确(系统误差小)准确(系统误差小)不精密(随机误差大)不精密(随机误差大)不准确(系统误差大)不准确(系统误差大)精密(随机误差小)精密(随机误差小)准确(系统误差小)准确(系统误差小)精密(随机误差小)精密(随机误差小)不准确(系统误差大不准确(系统误差大)5.2 偶然误差的统计特征v测量误差理论主要讨论具有偶然误差的一系列观测值中如何求得最可靠的结果(称为最或然值或估值)和评定观测成果的精度。5.2 偶然误差的统计特征1212niX,nn, , ,nil llXl 设某一量的为对此量进行了

    5、次观测,得到个观测值为:则每次观测中产生的偶然误差(“真误差”)为: , ,定义:真值研究研究的分布规律的分布规律偶然误差的分布规律真误差的频率直方图偶然误差的特性v在一定条件下的有限次观测中,偶然误差的绝对值不会超过一定的限值;v绝对值较小的误差出现的频率较大,绝对值大的出现的频率小;v绝对值相等的正、负误差具有大致相等的频率v当观测次数无限增大时,偶然误差的理论平均值趋于零。 0limlim21nnnnn偶然误差的特性:一个变量一个变量,若其取值随着试若其取值随着试验的结果的变化而变化,即其取值具有验的结果的变化而变化,即其取值具有随机性,且随机性,且能事先知道它的所有可能能事先知道它的所

    6、有可能取值,取值,不能事先确定它将要取哪一个不能事先确定它将要取哪一个值;则称这个变量为值;则称这个变量为随机变量。随机变量。偶然误差的统计特性v当误差的个数逐渐增大,同时又无限缩小误差当误差的个数逐渐增大,同时又无限缩小误差的区间时,则频率直方图的边界为概率统计中的区间时,则频率直方图的边界为概率统计中的的“正态分布曲线正态分布曲线”偶然误差的统计特性 nnnEefnnnn222222122021)(22limlimlim标准差:方差:)(其数学期望:数:正态分布的概率密度函评定精度的标准中误差v定义定义nnmn22221n引入中误差中误差的原因:由于方差方差(数学概念)要求观测值个数趋于无

    7、穷,因而在工程测量中引进中误差的概念。 nnnnn2222212limlim方差:评定精度的标准相对误差v相对误差相对误差是观测值的中误差与观测值之比,是观测值的中误差与观测值之比,常用来表示距离测量的精度。一般用分母常用来表示距离测量的精度。一般用分母为为1 1的分数来表示。的分数来表示。1/10001mm,m则相对误差为:的距离,测量的误差为若测量1n相对误差相对误差的数值修约规则:如某长度为738.5的边测量误差为0.15m,则其相对精度为:0.15/738.5=1/4923=1/49001/4999=1/4900 x评定精度的标准评定精度的标准极限误差极限误差评定精度的标准极限误差v由

    8、于正态分布观测值出现由于正态分布观测值出现 2 2倍以上中误倍以上中误差的概率很小,因此一般选用差的概率很小,因此一般选用2 2倍中误倍中误差作为差作为“极限误差极限误差”或称为或称为“允许误允许误差差”。用来作为衡量某个观测值是否含。用来作为衡量某个观测值是否含有粗差的标准。有粗差的标准。5.3 观测值的最或然值及观测值的改正数v观测值观测值最或然值定义定义在大多数条件下,观测值的在大多数条件下,观测值的真值不是已知不是已知的,测量就是要通过大量的多余观测计算的,测量就是要通过大量的多余观测计算出观测值的最或然值。因此最或然值就是出观测值的最或然值。因此最或然值就是在一定的观测条件下与真值最

    9、接近的值。在一定的观测条件下与真值最接近的值。一般用以下的两个符号来表示真值和最或一般用以下的两个符号来表示真值和最或然值。然值。XX最或然值:真值:5.3 5.3 观测值的最或然值及观测值的最或然值及观测值的改正数观测值的改正数 .lim0,22112121nlXnlXnnlXlXlXlllXnnnnn从而有:误差的特性,得到趋于无穷时,根据偶然当观测次数得到:将上式相加,并除以则:,其相应的真误差为:,各次观测值为:设某一量的真值为nlimnn5.3 观测值的最或然值及观测值的改正数nlnlllXnlXnnlim21即:作为该量的最或然值。限观测量的算术平均值观测,因而把有对某一个量进行无

    10、数次而实际测量中,不可能趋于该量的真值。,观测值的算术平均值当观测次数无限增大时的含义:5.3 观测值的最或然值及观测值的改正数02211lnlnlXnvlXvlXvlXvlXvvnniin次的某观测量:对于观测了即:然值与观测值的差值,观测值的改正数是最或)的定义:观测值的改正数(5.3 观测值的最或然值及观测值的改正数v 观测值改正数的特点:观测值改正数的特点:1)1) 一组观测值取算术平均值作为其最或一组观测值取算术平均值作为其最或然值之后,其改正值之和恒等于零然值之后,其改正值之和恒等于零; ;2)2) 以算术平均值为最或然值满足最小二以算术平均值为最或然值满足最小二乘原则乘原则(vv

    11、=min);(vv=min);3)3) 观测值改正数与真误差是有区别的。观测值改正数与真误差是有区别的。iiilXlXvi真误差:改正数:5.3 观测值的最或然值及观测值的改正数v取算术平均值作为最或然值,满足取算术平均值作为最或然值,满足最小二乘法的证明:最小二乘法的证明:nlXlXnlXXdvvdXliXvvniini0)(2)(2min)( 121求导:以此为条件对nnlXvlXvlXv22115.4 观测值的精度评定v问题:怎样用改正数问题:怎样用改正数v v来计算中误差?来计算中误差?nnmn22221n表示观测值的精度的指标:中误差中误差,比例误差,极限误差n回顾:回顾:中误差的定

    12、义5.4 观测值的精度评定)(得:,并顾及将上列各式平方后相加)(得:及将上列各式相加,并顾减,得:将上列左右两式分别相20,10,n)XXn(vvvXXnvXXvXXvXXvlXvlXlXvlXlXvlXnnnnn)()()()(,221122221111112()(2)()(122131212222212222221nvvmnvvnnvvnnnnnXXnXXnnnn即:)中得到:代入到(趋于无穷时)当两边平方:)得:由(n-5.4 观测值的精度评定1nvvm已知观测值的改正数求中误差,适已知观测值的改正数求中误差,适用于绝大多数情况。用于绝大多数情况。nm已知观测值的真误差求中误差,适已知

    13、观测值的真误差求中误差,适用的情况比较少。用的情况比较少。iiilXlXvi真误差:改正数:5.5 误差传播定律v1 1 直接观测量和间接观测量直接观测量和间接观测量如圆的直径和面积如圆的直径和面积v2 2 误差传播率的定义:误差传播率的定义:在测量工作中,有一些需要知道的量并非在测量工作中,有一些需要知道的量并非直接观测量,而是由直接观测量通过一定直接观测量,而是由直接观测量通过一定的函数关系计算而得到,由于直接观测量的函数关系计算而得到,由于直接观测量包含误差,因而函数会受其影响也包含一包含误差,因而函数会受其影响也包含一定的误差,称之为误差传播。定的误差,称之为误差传播。S=D2/4直接

    14、观测量,直接观测量,有误差有误差有误差有误差5.5 误差传播定律v(1 1)和差函数的误差传播率)和差函数的误差传播率2222121221121222121211122121221121210 2,xxyynnyyyyymmmnnnnXXXXYXXYxxyy,趋于由偶然误差的性质,得到:除以将格式平方后再相加并)()()()()()()()()(次,则有:观测了若直接观测值从而有:由于)()(nnn15.5 误差传播定律v(2 2)倍函数的误差传播率)倍函数的误差传播率222222112,xyynyyyyymkmnknkkkXXkXkYkxyy,得到:除以将格式平方后再相加并)()()(次,则

    15、有:观测了若直接观测值从而有:)(nnn15.5 误差传播定律v(3 3)线性函数的中误差)线性函数的中误差222222212, 1,22222112221122222112112211112221122211122112112,)()(nyxnxxjijnjijiinnnyynnynnynnynnynnnynnmkmkmkmnkknknknknkkkkkkkkkXXkkkXkXkXkYxkxkxky,得到:除以将格式平方后再相加并)()()()()()()()()()()()(次,则有:观测了若直接观测值从而有:)(nnnnnn15.5 误差传播定律v(4 4)一般函数的误差传播律:)一般函

    16、数的误差传播律:。的中误差)。要求其中误差分别为:为独立观测量。已知式中:个量的函数:以下设某个要求的未知量是yxinmYnimnixxxxFYi, 2 , 1(), 2 , 1(),(21n5.5 误差传播定律v由于误差相对于观测值而言是微小量,由于误差相对于观测值而言是微小量,由高等数学的知识可知:变量的误差由高等数学的知识可知:变量的误差和函数的误差之间的关系,和函数的误差之间的关系,22222221221nyxxxmxFmxFmxFm)()()(n一般函数误差传播率的推导222222212222222212321222111212121212121,nynynnnxxxxnxxxxxy

    17、nxnxxyxnxxmxFmxFmxFmmkmkmkmkkkkxF,kxFkxFxFxFxFdxFdxFdxFdy)()()(即:差传播律得:从而根据线形函数的误令:量:用真误差代替微分中增n25.5 误差传播定律v线性方程组的误差传播律:线性方程组的误差传播律:002010021222211121121m210221120222212121012121111,yyyYAAXYaaaAaaaaaaaaaAxxxXaxaxaxayaxaxaxayaxaxaxaymmnmmnnnmnmnmmmnnnn成矩阵的形式:则上面的方程组可以写令5.5 误差传播定律v测量中的中误差即是数学中的方差,测测量中

    18、的中误差即是数学中的方差,测量的真误差服从正态分布,可以用概率量的真误差服从正态分布,可以用概率中的方差公式来推导。中的方差公式来推导。TTTTTTTTAXADAXEXXEXAEAAXEXXEXAEAXEXAXEXAEAAXEAAXAAXEAAXEYEYYEYEYD)()()()()()()()()()()()(00005.5 误差传播定律v由方差阵的定义:222221211)(nnnyyyyyyyyymmmmmmYD对称222221211)(nnnxxxxxxxxxmmmmmmXD对称Tnnnnnnxxxxxxxxxnnnnnnyyyyyyyyyaaaaaaaaammmmmmaaaaaaaa

    19、ammmmmmnnnnnn212222111211222212222111211222221211221211对称对称例1v某量进行了某量进行了n n次等精度观测,求其算术平次等精度观测,求其算术平均值的精度:均值的精度:) 1(11121212222222222221nnvvnmmmmmmmnmnmnmnlllXXnnXlllllln故:而有由于是等精度观测,因629nnn设要保证观测要求需要观测 测回则有:设采用某经纬仪测量角度,一测回测量中误设采用某经纬仪测量角度,一测回测量中误差为差为6,欲使观测的精度达到欲使观测的精度达到2 ,最少需要,最少需要观测多少测回?观测多少测回?例2m01

    20、2. 0803. 4012. 0)20626530()45305cos50(01. 0)45305(sin)cos()(sin)()(803. 445305sin50Ssinh3045305,010502202022222222200hmmSmmhmShmhm.ShSSh从而:的中误差:求高差,竖直角为边的边长为:三角高程测量中,某斜S SD D h h例3对某段距离用同等精度丈量了对某段距离用同等精度丈量了6次,结果列于下表,求这段次,结果列于下表,求这段距离的最或然值,观测值的中误差及最或然值的中误差。距离的最或然值,观测值的中误差及最或然值的中误差。解:解:LixLixiixLxLLLi

    21、iLLLxvLxnnLnLnLxLL)()(000000又则令例3(续)次序次序观测值观测值(m)(m)v(mm)v(mm)vv(mm2)vv(mm2)1 1346.535346.5351515+4+416162 2346.548346.5482828-9-981813 3346.520346.5200 0+19+193613614 4346.546346.5462626-7-749495 5346.550346.5503030-11-111211216 6346.537346.5371717+2+24 4v=-2v=-2vv=632vv=632mxmmnmMmLxnvvmnxLx005. 0

    22、539.3466 . 462 .11539.346019. 0520.3461663211961160520.3460L取116L例4v设对某三角形的三个内角进行了等精度设对某三角形的三个内角进行了等精度观测,观测误差为观测,观测误差为 , , 求经闭合差分配求经闭合差分配后三个角的方差阵。后三个角的方差阵。20m例4(续)00000006060603231313132313131326032313136031323136031313231802020202020202020202020203231313132313131323231313132313131320000003231313132

    23、31313132)(mmmmmmmmmmmmYDT5.5 误差传播定律v用误差传播率求观测值函数精度的步骤:用误差传播率求观测值函数精度的步骤:222221212221121. 3)()()(. 2. 1nnynnn)mxF()mxF(m)xF(mxxFxxFxxFY),x,xF(xY算函数的中误差:代入误差传播公式,计真误差之间的关系:出函数真误差与观测值对函数进行全微分,得函数式:按观测值的性质先列出5.6 加权平均值及其中误差v1 1 不等精度观测与权:不等精度观测与权:iPmmmCi10202iim1CP中误差可以表示为:表示。在引进权以后,用误差:的中误差称为单位权中为任意常数。权等

    24、于权的定义:5.6 加权平均值及其中误差v加权平均值:加权平均值:00212211PlPlXlllPPlPPPlPlPlPXiinnn代入上式计算得到:计算加权平均值:似,因此,也可以这样由于各观测量的值都近5.6 加权平均值及其中误差v加权平均值的中误差:加权平均值的中误差:测值的权之和。即加权平均值的权为观又由于按误差传播率)()()(:2200222210220222222212122211PmmPmmPPPPPPmmmmPmPPmPPmPPmlPPlPPlPPXXXnXiinnXnnXP5.6 加权平均值及其中误差v单位权中误差单位权中误差的计算:100已知改正数时:已知真误差时:nP

    25、nPvvmm5.7 5.7 最小二乘原理与测量平差最小二乘原理与测量平差测量平差(测量平差(Adjustment)Adjustment) 依据某种最优化准则,由一系列依据某种最优化准则,由一系列带有观测误差的测量数据,求定未知带有观测误差的测量数据,求定未知量的最佳估值及精度的理论和方法。量的最佳估值及精度的理论和方法。 5.7 5.7 最小二乘原理与测量平差最小二乘原理与测量平差v必要观测与多余观测的概念必要观测与多余观测的概念:23Cs1s3s21.确定三角形的形状:确定三角形的形状:观测三个观测三个内角的任意两个即可内角的任意两个即可,称其必要元称其必要元素个数为素个数为2,必要元素有,

    26、必要元素有 种选择种选择2.确定三角形的形状和大小:确定三角形的形状和大小:6个个元素中必须有选择地观测三个内角与元素中必须有选择地观测三个内角与三条边的三个元素,因此,其必要元三条边的三个元素,因此,其必要元素个数为素个数为3。任意。任意2个角度个角度+1个边、个边、2个个边边+1个角度、三个边。个角度、三个边。3323131323CCCCC5.7 5.7 最小二乘原理与测量平差最小二乘原理与测量平差v必要观测:必要观测: 能够唯一确定一个几何模型所必要的观能够唯一确定一个几何模型所必要的观测数,一般用测数,一般用t t表示。表示。v多余观测:多余观测:观测值的个数观测值的个数n n与必要观

    27、测个数与必要观测个数t t之差之差一般用一般用r r表示,表示,r=n-tr=n-t。5.7 5.7 最小二乘原理与测量平差最小二乘原理与测量平差ntnt, nt, 可以确定模型,还可以发现粗差。可以确定模型,还可以发现粗差。条件方程条件方程 必要观测可以唯一确定模型,其相互独立。必要观测可以唯一确定模型,其相互独立。可见若有多余观测必然可用这可见若有多余观测必然可用这t t个元素表示,个元素表示,即形成即形成r r个条件方程。个条件方程。vvv321ntr n t 180180()rvvv条件方程条件方程误差方程误差方程条件平差的一般形式:条件平差的一般形式:0A vW以条件方程为函数模型的

    28、平差方法,以条件方程为函数模型的平差方法,称为条件平差法。称为条件平差法。,1,1()rnFFL线性化以后得到误差方程:线性化以后得到误差方程:条件方程的线性化条件方程的线性化00( )()()FFF LF LvF LvL1111222212,12nr nnnnnFFFLLL nFFFFALLLLFFFLLL0,()( )r nWF LF L得到最小二乘解:得到最小二乘解:按求函数极值的拉格朗日乘数法,构造新的函数:min)(2WVAKVVTTTrbarkkkK1求其一阶偏导数,并令其为0:220TTTdVKAdVVA K111()0()TTrrrAAKWKAAWNW条件平差的计算步骤:条件平

    29、差的计算步骤:1.1. 根据平差问题的具体情况,列出条件方程根据平差问题的具体情况,列出条件方程式,并线性化,条件方程的个数等于多余式,并线性化,条件方程的个数等于多余观测数观测数r r。 2.2. 根据条件式的系数,闭合差及观测值的权根据条件式的系数,闭合差及观测值的权组成法方程式组成法方程式3.3. 解算法方程,求出联系数解算法方程,求出联系数K K值。值。 4.4. 将将K K值代入改正数方程式,求出值代入改正数方程式,求出V V值,并求值,并求出平差值出平差值5.5. 为了检查平差计算的正确性,常用平差值为了检查平差计算的正确性,常用平差值 重新列出平差值条件方程式,看其是否满重新列出

    30、平差值条件方程式,看其是否满足方程足方程条件平差算例:条件平差算例:为了确定B、C、D三点的高程,其必要观测数 t =3,实际观测了6 段高差, 故多余观测数 r = nt =3,应列出3个线性无关条件方程. h1 A B h2 C h3 h4 h5 h6 D h1h11.2101.210h4h43.2923.292h2h22.2662.266h5h51.0381.038h3h31.0501.050h6h62.0762.076 这个水准网可以列出这个水准网可以列出7 7个条件方程个条件方程, ,其其中中3 3个是相互独立的个是相互独立的, , 取:取:132164254000hhhhhhhhh式中: 表示观测量 hi 的平差值。ih(a)由于:iiihhv代入代入(a)式得:式得: 其中:其中:0, 00354226411321wvvvwvvvwvvv(b)112321463245whhhwhhhwhhh321,011010101001000111wwwWA令:V = ( v1 v2 v3 v4 v5 v6)T得到条件方程的一般形式: AV +W=0 (c)

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:测量学第五章测量误差的基本知识课件.ppt
    链接地址:https://www.163wenku.com/p-2869027.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库