书签 分享 收藏 举报 版权申诉 / 26
上传文档赚钱

类型3.1回归分析的基本思想及其初步应用(一)-(1)课件.ppt

  • 上传人(卖家):三亚风情
  • 文档编号:2862427
  • 上传时间:2022-06-05
  • 格式:PPT
  • 页数:26
  • 大小:1.11MB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《3.1回归分析的基本思想及其初步应用(一)-(1)课件.ppt》由用户(三亚风情)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    3.1 回归 分析 基本 思想 及其 初步 应用 课件
    资源描述:

    1、2022-6-5郑平正 制作3.1回归分析的基回归分析的基本思想及其初步本思想及其初步应用(一)应用(一)高二数学高二数学 选修选修2-3(一)回顾:数学(一)回顾:数学线性回归分线性回归分析的步骤析的步骤 : :温故知新温故知新1、画散点图、画散点图4、用回归直线方程进行预报、用回归直线方程进行预报3、求回归直线方程、求回归直线方程 ybxa2、求、求 , b ann(x- x )(y- y )xy-n x yiiiii= 1i= 1b =,nn222(x- x )x-n xiii= 1i= 1 a = y -b x .nn11x =x,y =y.iinni= 1i= 1其其 中中 (二)最

    2、小二乘估计公式(二)最小二乘估计公式 :ybxa( , )x y称为样本点的中心称为样本点的中心。 (三)描述两个变量之间线性相关关系的强(三)描述两个变量之间线性相关关系的强弱的相关系数弱的相关系数0.751, 1, 0.75, 0 25,0.25,rrr 当, 表明两个变量正相关很强;当表明两个变量负相关很强;当.表明两个变量相关性较弱。122122211121()()()()(niiinniiiiniiinniiiix ynxxyx yxnxynyyxxyyr课前检测:课前检测: 假设关于某设备的使用年限假设关于某设备的使用年限x和所支出的维修费和所支出的维修费用用 y(万元),有如下的

    3、统计资料。(万元),有如下的统计资料。使用年限使用年限x 23456维修费用维修费用y 2.23.85.56.57.0若由资料知若由资料知,y对对x呈线性相关关系。试求:呈线性相关关系。试求:(1)线性回归方程)线性回归方程 的回归系数的回归系数 ;()估计使用年限为()估计使用年限为10年时,维修费用是多少?年时,维修费用是多少?ybxa ab、1.23,0.08.ba1.230.08.yx使用年限为使用年限为10年时,维修费用是年时,维修费用是:12.38万元万元例例2、在一段时间内,某中商品的价格、在一段时间内,某中商品的价格x元和需求量元和需求量Y件之间的一组数据为:件之间的一组数据为

    4、:求出求出Y对的回归直线方程,并说明拟合效果的好坏。对的回归直线方程,并说明拟合效果的好坏。价格价格x1416182022需求量需求量Y1210753解:解:18,7.4,xy555221111660,327,620,iiiiiiixyx y7.4 1.15 1828.1.a1.1528.1.yx 回归直线方程为:51522155iiiiix yxybxx26205 18 7.41.15.16605 18 例例1 从某大学中随机选取从某大学中随机选取8名女大学生,其身高和体重数据如表名女大学生,其身高和体重数据如表1-1所示。所示。编号12345678身高/cm165165 157 170 1

    5、75 165 155 170体重/kg4857505464614359求根据女大学生的身高预报她的体重的回归方程,并预报一名身高为求根据女大学生的身高预报她的体重的回归方程,并预报一名身高为172cm的女大学生的体重。的女大学生的体重。问题呈现:女大学生的身高与体重问题呈现:女大学生的身高与体重0.84985.712yx解;解; 1.由于问题中由于问题中要求根据身高预报要求根据身高预报体重,因此选取身体重,因此选取身高为自变量高为自变量x,体,体重为因变量重为因变量y学学身身高高172cm女172cm女大大生生体体重重y = 0.849y = 0.849172-85.712 = 60.316(

    6、kg)172-85.712 = 60.316(kg)3.3.回归方程:回归方程:2. 散点图;散点图;4.本例中本例中, r=0.7980.75这表明体重与身高有很强的线性相关这表明体重与身高有很强的线性相关关系,从而也表明我们建立的回归模型是有意义的。关系,从而也表明我们建立的回归模型是有意义的。81iiixy821iixx y 72315218774165.2554.5探究:探究:身高为身高为172cm的女大学生的体重一定是的女大学生的体重一定是60.316kg吗?如果不是,你能解析一下原因吗?吗?如果不是,你能解析一下原因吗?答:身高为答:身高为172cm的女大学生的体重不一定是的女大学

    7、生的体重不一定是60.316kg,但一般可以认为她的体重接近于,但一般可以认为她的体重接近于60.316kg。例例1 从某大学中随机选取从某大学中随机选取8名女大学生,其身高和体重数据如表所示。名女大学生,其身高和体重数据如表所示。编号12345678身高/cm165165 157 170 175 165 155 170体重/kg4857505464614359女大学生的身高与体重女大学生的身高与体重0.84985.712yx解;解; 1.由于问题中由于问题中要求根据身高预报要求根据身高预报体重,因此选取身体重,因此选取身高为自变量高为自变量x,体,体重为因变量重为因变量y学学身身高高172c

    8、m女172cm女大大生生体体重重y = 0.849y = 0.849172-85.712 = 60.316(kg)172-85.712 = 60.316(kg)3.3.回归方程:回归方程:2. 散点图;散点图;4.本例中本例中, r=0.7980.75这表明体重与身高有很强的线性相关这表明体重与身高有很强的线性相关关系,从而也表明我们建立的回归模型是有意义的。关系,从而也表明我们建立的回归模型是有意义的。81iiixy821iixx y 72315218774165.2554.50.84985.712yx例例1 从某大学中随机选取从某大学中随机选取8名女大学生,其身高和体重数据如表名女大学生,

    9、其身高和体重数据如表1-1所示。所示。编号12345678身高/cm165165 157 170 175 165 155 170体重/kg4857505464614359女大学生的身高与体重女大学生的身高与体重ybxay bx a我们可以用下面的我们可以用下面的线性回归模型线性回归模型来表示:来表示:y=bx+a+e, (3)其中其中a和和b为模型的未知参数,为模型的未知参数,e称为随机误差称为随机误差。y=bx+a+e,E(e)=0,D(e)= (4) 2.在线性回归模型在线性回归模型(4)中,随机误差中,随机误差e的方差的方差 越小,通过越小,通过回归直线回归直线 (5)预报真实值预报真实

    10、值y的精度越高。的精度越高。2ybxa例例1 从某大学中随机选取从某大学中随机选取8名女大学生,其身高和体重数据如表名女大学生,其身高和体重数据如表1-1所示。所示。编号12345678身高/cm165165 157 170 175 165 155 170体重/kg4857505464614359女大学生的身高与体重女大学生的身高与体重ybxay bx a我们可以用下面的我们可以用下面的线性回归模型线性回归模型来表示:来表示:y=bx+a+e, (3)其中其中a和和b为模型的未知参数,为模型的未知参数,e称为随机误差称为随机误差。y=bx+a+e,E(e)=0,D(e)= (4) 2.在线性回

    11、归模型在线性回归模型(4)中,随机误差中,随机误差e的方差的方差 越小,通过越小,通过回归直线回归直线 (5)预报真实值预报真实值y的精度越高。的精度越高。2ybxa随机误差是引起预报值随机误差是引起预报值 与真实值与真实值y之间的误差的原因之一,之间的误差的原因之一,其大小取决于随机误差的方差。其大小取决于随机误差的方差。 y另一方面,由于公式另一方面,由于公式(1)和和(2)中中 和和 为截距和斜率的估计值,为截距和斜率的估计值,它们与真实值它们与真实值a和和b之间也存在误差,这种误差是引起预报值之间也存在误差,这种误差是引起预报值与真实值与真实值y之间误差的另一个原因。之间误差的另一个原

    12、因。 y ab 假设假设 1:身高和随机误差的不同不会对体重产生任何影响,身高和随机误差的不同不会对体重产生任何影响, 54.554.554.554.554.554.554.554.5体重/kg170155165175170157165165身高/cm87654321编号54.5kg怎样研究随即误差?怎样研究随即误差?5943616454505748体重/kg170155165175170157165165身高/cm87654321编号 例如,编号为例如,编号为6的女大学生的体重并没有落在水平直线上,她的的女大学生的体重并没有落在水平直线上,她的体重为体重为61kg。解释变量(身高)和随机误差

    13、共同把这名学生的体。解释变量(身高)和随机误差共同把这名学生的体重从重从54.5kg“推推”到了到了61kg,相差,相差6.5kg,所以,所以6.5kg是解释变量是解释变量和随机误差的和随机误差的组合效应组合效应。用这种方法可以对所有预报变量计算组合效应。用这种方法可以对所有预报变量计算组合效应。数学上,把每个效应(观测值减去总的平均值)的平方加起来,即用数学上,把每个效应(观测值减去总的平均值)的平方加起来,即用21()niiyy表示总的效应,称为表示总的效应,称为总偏差平方和总偏差平方和。5943616454505748体重/kg170155165175170157165165身高/cm8

    14、7654321编号 假设假设2:随机误差对体重没有影响,也就是说,体重仅受身高的影响,那么散点图随机误差对体重没有影响,也就是说,体重仅受身高的影响,那么散点图中所有的点将完全落在回归直线上。中所有的点将完全落在回归直线上。 怎样研究随即误差?怎样研究随即误差? 因此,数据点和它在回归直线上相应位置的差异因此,数据点和它在回归直线上相应位置的差异 是随机误差的效应,是随机误差的效应,称称 为为残差残差。)iiyy(iiieyy=例如,编号为例如,编号为6的女大学生,计算随机误差的效应(残差)为:的女大学生,计算随机误差的效应(残差)为:61 (0.849 16585.712)6.627对每名女

    15、大学生计算这个差异,然后分别将所得的值平方后加起来,用数学符号对每名女大学生计算这个差异,然后分别将所得的值平方后加起来,用数学符号21()niiiyy称为称为残差平方和残差平方和,它代表了随机误差的效应。它代表了随机误差的效应。表示为:表示为:我们可以用我们可以用相关指数相关指数R2来刻画回归的效果,其计算公式是来刻画回归的效果,其计算公式是22121()11()niiiniiyyRyy残差平方和。总偏差平方和如何衡量预报的精度?如何衡量预报的精度?显然,显然,R2的值越大,说明残差平方和越小,也就是说模型拟合效果越好。的值越大,说明残差平方和越小,也就是说模型拟合效果越好。 如果某组数据可

    16、能采取几种不同回如果某组数据可能采取几种不同回归方程进行回归分析,则可以通过比归方程进行回归分析,则可以通过比较较R2的值来做出选择,即选取的值来做出选择,即选取R2较大较大的模型作为这组数据的模型。的模型作为这组数据的模型。学以致用:学以致用:1、在对两个变量,进行线性回归分析时有、在对两个变量,进行线性回归分析时有下列步骤:下列步骤:对所求出的回归方程作出解释,收集数据(,)对所求出的回归方程作出解释,收集数据(,)求线性回归方程,求相关系数,根据所搜集的数据绘求线性回归方程,求相关系数,根据所搜集的数据绘制散点图如果根据可靠性要求能够作出变量,具有线制散点图如果根据可靠性要求能够作出变量

    17、,具有线性相关结论,则在下列操作顺序中正确的是()性相关结论,则在下列操作顺序中正确的是()ixiy学以致用:学以致用:2、对于相关指数,下列说法正确的是(、对于相关指数,下列说法正确的是()2R2R2R、的取植越小,模型拟合效果越好、的取植越小,模型拟合效果越好、的取值可以是任意大,且取值越大拟合效果越好、的取值可以是任意大,且取值越大拟合效果越好、的取值越接近,模型拟合效果越好、的取值越接近,模型拟合效果越好、以上答案都不对、以上答案都不对2R2R2R学以致用:学以致用:3、甲、乙、丙,丁四位同学各自对,两变量、甲、乙、丙,丁四位同学各自对,两变量的线性相关性做实验,并用回归分析方法分别求

    18、得的线性相关性做实验,并用回归分析方法分别求得相关系数相关系数r与残差平方和与残差平方和m如下表:如下表:甲甲乙丙丁r0.820.780.690.85m106115124103则哪位同学的实验结果体现,两变量有更强的线性相关性则哪位同学的实验结果体现,两变量有更强的线性相关性甲乙丙丁甲乙丙丁学以致用:学以致用:4、 已知两个变量已知两个变量x和和y之间有线性相关性,次实之间有线性相关性,次实验得到样本如下:验得到样本如下:6.13.920y3210 x()则()则y对对x的线性回归方程是的线性回归方程是()相应于各样本点的残差()相应于各样本点的残差(i=1,2,3,4)分别是,分别是,残差平方和是残差平方和是ie课堂总结:课堂总结:1、线性回归分析的步骤、线性回归分析的步骤2、回归模型的建立、回归模型的建立3、随机误差的研究、随机误差的研究知识小节知识小节:数学思想小结数学思想小结:1、最小二乘法思想、最小二乘法思想2、函数与方程的思想、函数与方程的思想3、数形结合、数形结合

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:3.1回归分析的基本思想及其初步应用(一)-(1)课件.ppt
    链接地址:https://www.163wenku.com/p-2862427.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库