书签 分享 收藏 举报 版权申诉 / 25
上传文档赚钱

类型2019年河南省信阳市潢川县中考数学一模试卷(含答案解析).doc

  • 上传人(卖家):欢乐马
  • 文档编号:286228
  • 上传时间:2020-02-23
  • 格式:DOC
  • 页数:25
  • 大小:516.50KB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《2019年河南省信阳市潢川县中考数学一模试卷(含答案解析).doc》由用户(欢乐马)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    2019 河南省 信阳市 潢川县 中考 数学 试卷 答案 解析 下载 _模拟试题_中考复习_数学_初中
    资源描述:

    1、2019年河南省信阳市潢川县中考数学一模试卷一选择题(共10小题,满分30分,每小题3分)1若实数a、b互为相反数,则下列等式中成立的是()Aab0Ba+b0Cab1Dab12为庆祝首个“中国农民丰收节”,十渡镇西河村举办“西河稻作文化节”活动西河水稻种植历史悠久,因“色白粒粗,味极香美,七煮不烂”而享誉京城已知每粒稻谷重约0.000035千克,将0.000035用科学记数法表示应为()A35106B3.5106C3.5105D0.351043如图是按1:10的比例画出的一个几何体的三视图,则该几何体的侧面积是()A200 cm2B600 cm2C100cm2D200cm24郑州某中学在备考

    2、2018 河南中考体育的过程中抽取该校九年级 20 名男生进 行立定跳远测试,以便知道下一阶段的体育训练,成绩如下所示:成绩(单位:米)2.102.202.252.302.352.402.452.50人数23245211则下列叙述正确的是()A这些运动员成绩的众数是 5B这些运动员成绩的中位数是 2.30C这些运动员的平均成绩是 2.25D这些运动员成绩的方差是 0.072 55下列各式中与是同类二次根式的是()ABCD6如图,AOB是直角三角形,AOB90,OB2OA,点A在反比例函数y的图象上若点B在反比例函数y的图象上,则k的值为()A4B4C2D27若关于x的不等式组无解,则a的取值范

    3、围是()Aa3Ba3Ca3Da38若0m2,则关于x的一元二次方程(x+m)(x+3m)3mx+37根的情况是()A无实数根B有两个正根C有两个根,且都大于3mD有两个根,其中一根大于m9如图,以矩形ABOD的两边OD、OB为坐标轴建立直角坐标系,若E是AD的中点,将ABE沿BE折叠后得到GBE,延长BG交OD于F点若OFI,FD2,则G点的坐标为()A(,)B(,)C(,)D(,)10如图,矩形ABCD中,AB3,BC5,点P是BC边上的一个动点(点P不与点B、C重合),现将PCD沿直线PD折叠,使点C落到点C处;作BPC的角平分线交AB于点E设BPx,BEy,则下列图象中,能表示y与x的函

    4、数关系的图象大致是()ABCD二填空题(共5小题,满分15分,每小题3分)11计算: ; ;(+2)2015(2)2014 12如图将一直角三角板的直角顶点放置在两边互相平行的纸条的边上,若135,则2的大小为 度13甲、乙、丙三名学生各自随机选择到A、B两个书店购书,则甲、乙、丙三名学生到同一个书店购书的概率为 14如图,AC是半圆O的一条弦,以弦AC为折线将弧AC折叠后过圆心O,O的半径为2,则圆中阴影部分的面积为 15如图,正方形ABCD的边长为12,点E在边AB上,BE8,过点E作EFBC,分别交BD、CD于G、F两点若点P、Q分别为DG、CE的中点,则PQ的长为 三解答题(共8小题,

    5、满分75分)16先化简,然后从1,0,2中选一个合适的x的值,代入求值17数学课上学习了圆周角的概念和性质:“顶点在圆上,两边与圆相交”,“同弧所对的圆周角相等”,小明在课后继续对圆外角和圆内角进行了探究下面是他的探究过程,请补充完整:定义概念:顶点在圆外,两边与圆相交的角叫做圆外角,顶点在圆内,两边与圆相交的角叫做圆内角如图1,M为所对的一个圆外角(1)请在图2中画出所对的一个圆内角;提出猜想(2)通过多次画图、测量,获得了两个猜想:一条弧所对的圆外角 这条弧所对的圆周角;一条弧所对的圆内角 这条弧所对的圆周角;(填“大于”、“等于”或“小于”)推理证明:(3)利用图1或图2,在以上两个猜想

    6、中任选一个进行证明;问题解决经过证明后,上述两个猜想都是正确的,继续探究发现,还可以解决下面的问题(4)如图3,F,H是CDE的边DC上两点,在边DE上找一点P使得FPH最大请简述如何确定点P的位置(写出思路即可,不要求写出作法和画图)18在读书月活动中学校准备购买一批课外读物,为使课外读物满足同学们的需求,学校就”我最喜爱的课外读物”从文学、艺术、科普和其他四个类別进行了抽样调查(每位同学只选一类)下图是根据调查结果绘制的两幅不完整的统计图请你根据统计图提供的信息,解答下列问题:(1)本次调查中,一共调查了 名同学;(2)条形统计图中m ,n ;(3)扇形统计图中,艺术类读物所在扇形的圆心角

    7、是 度;(4)学校计划购买深外读物8000册,请根据样本数据,估计学校购买其他类读物多少册比较合理?19如图是小强洗漱时的侧面示意图,洗漱台(矩形ABCD)靠墙摆放,高AD80cm,宽AB48cm,小强身高166cm,下半身FG100cm,洗漱时下半身与地面成80(FGK80),身体前倾成125(EFG125),脚与洗漱台距离GC15cm(点D,C,G,E在同一直线上)(cos800.018,sin800.98,1.414)(1)此时小强头部E点与地面DK相距多少?(2)小强希望他的头部E恰好在洗漱盆AB的中点O的正上方,他应向前或后退多少?20已知反比例函数的图象过点A(2,2)(1)求函数

    8、的解析式y随x的增大而如何变化?(2)点B(4,2),C(3,)和D()哪些点在图象上?(3)画出这个函数的图象21某物流公司承接A、B两种货物运输业务,已知5月份A货物运费单价为50元/吨,B货物运费单价为30元/吨,共收取运费9500元;6月份由于油价上涨,运费单价上涨为:A货物70元/吨,B货物40元/吨;该物流公司6月承接的A种货物和B种数量与5月份相同,6月份共收取运费13000元(1)该物流公司5月份运输两种货物各多少吨?(2)该物流公司预计7月份运输这两种货物330吨,且A货物的数量不大于B货物的2倍,在运费单价与6月份相同的情况下,该物流公司7月份最多将收到多少运输费?22如图

    9、1,在RtABC中,A90,ABAC,点D,E分别在边AB,AC上,ADAE,连接DC,点M,P,N分别为DE,DC,BC的中点(1)观察猜想: 图1中,线段PM与PN的数量关系是 ,位置关系是 ; (2)探究证明: 把ADE绕点A逆时针方向旋转到图2的位置,连接MN,BD,CE,判断PMN的形状,并说明理由; (3)拓展延伸: 把ADE绕点A在平面内自由旋转,若AD4,AB10,请直接写出PMN面积的最大值23如图1,抛物线yax2+bx+3交x轴于点A(1,0)和点B(3,0)(1)求该抛物线所对应的函数解析式;(2)如图2,该抛物线与y轴交于点C,顶点为F,点D(2,3)在该抛物线上求四

    10、边形ACFD的面积;点P是线段AB上的动点(点P不与点A、B重合),过点P作PQx轴交该抛物线于点Q,连接AQ、DQ,当AQD是直角三角形时,求出所有满足条件的点Q的坐标2019年河南省信阳市潢川县中考数学一模试卷参考答案与试题解析一选择题(共10小题,满分30分,每小题3分)1【分析】根据只有符号不同的两数叫做互为相反数解答【解答】解:实数a、b互为相反数,a+b0故选:B【点评】本题考查了相反数的定义,是基础题,熟记概念是解题的关键2【分析】科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同

    11、当原数绝对值1时,n是正数;当原数的绝对值1时,n是负数【解答】解:0.0000353.5105,故选:C【点评】此题考查科学记数法的表示方法科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数,表示时关键要正确确定a的值以及n的值3【分析】首先判断出该几何体,然后计算其面积即可【解答】解:观察三视图知:该几何体为圆柱,高为2,底面直径为1,侧面积为:dh22,是按1:10的比例画出的一个几何体的三视图,原几何体的侧面积1002200,故选:D【点评】本题考查了由三视图判断几何体及圆柱的计算,解题的关键是首先判断出该几何体4【分析】根据方差、平均数、中位数和众数的计算公式和定义分别

    12、对每一项进行分析,即可得出答案【解答】解:A、这些运动员成绩的众数是2.35,错误;B、这些运动员成绩的中位数是2.30,正确;C、这些运动员的平均成绩是 2.30,错误;D、这些运动员成绩的方差不是0.0725,错误;故选:B【点评】此题考查了方差、平均数、中位数和众数,熟练掌握定义和计算公式是本题的关键,平均数平均数表示一组数据的平均程度中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);方差是用来衡量一组数据波动大小的量5【分析】根据二次根式的性质把各个二次根式化简,根据同类二次根式的概念判断即可【解答】解:A3,与是同类二次根式;B2,与不是同

    13、类二次根式;C,与不是同类二次根式;D与不是同类二次根式;故选:A【点评】本题考查的是同类二次根式的概念,把几个二次根式化为最简二次根式后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式6【分析】要求函数的解析式只要求出B点的坐标就可以,过点A,B作ACx轴,BDx轴,分别于C,D根据条件得到ACOODB,得到:2,然后用待定系数法即可【解答】解:过点A,B作ACx轴,BDx轴,分别于C,D设点A的坐标是(m,n),则ACn,OCm,AOB90,AOC+BOD90,DBO+BOD90,DBOAOC,BDOACO90,BDOOCA,OB2OA,BD2m,OD2n,因为点A在反比例函数

    14、y的图象上,则mn1,点B在反比例函数y的图象上,B点的坐标是(2n,2m),k2n2m4mn4故选:A【点评】本题考查了反比例函数图象上点的坐标特征,相似三角形的判定和性质,求函数的解析式的问题,一般要转化为求点的坐标的问题,求出图象上点的横纵坐标的积就可以求出反比例函数的解析式7【分析】利用不等式组取解集的方法,根据不等式组无解求出a的范围即可【解答】解:不等式组无解,a43a+2,解得:a3,故选:A【点评】此题考查了解一元一次不等式组,熟练掌握不等式组取解集的方法是解本题的关键8【分析】先把方程化为一般式,再计算判别式的值得到37(m24),然后根据m的范围得到0,从而根据判别式的意义

    15、可得到正确选项【解答】解:方程整理为x2+7mx+3m2+370,49m24(3m2+37)37(m24),0m2,m240,0,方程没有实数根故选:A【点评】本题考查了抛物线与x轴的交点:把求二次函数yax2+bx+c(a,b,c是常数,a0)与x轴的交点坐标问题转化为解关于x的一元二次方程也考查了判别式的意义9【分析】连结EF,作GHx轴于H,根据矩形的性质得ABODOF+FD3,再根据折叠的性质得BABG3,EAEG,BGEA90,而AEDE,则GEDE,于是可根据“HL”证明RtDEFRtGEF,得到FDFG2,则BFBG+GF5,在RtOBF中,利用勾股定理计算出OB2,然后根据FG

    16、HFBO,利用相似比计算出GH,FH,则OHOFHF,所以G点坐标为(,)【解答】解:连结EF,作GHx轴于H,如图,四边形ABOD为矩形,ABODOF+FD1+23,ABE沿BE折叠后得到GBE,BABG3,EAEG,BGEA90,点E为AD的中点,AEDE,GEDE,在RtDEF和RtGEF中,RtDEFRtGEF(HL),FDFG2,BFBG+GF3+25,在RtOBF中,OF1,BF5,OB2,GHOB,FGHFBO,即,GH,FH,OHOFHF1,G点坐标为(,)故选:B【点评】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对

    17、应角相等也考查了坐标与图形的性质和相似三角形的判定与性质10【分析】连接DE,根据折叠的性质可得CPDCPD,再根据角平分线的定义可得BPECPE,然后证明DPE90,从而得到DPE是直角三角形,再分别表示出AE、CP的长度,然后利用勾股定理进行列式整理即可得到y与x的函数关系式,根据函数所对应的图象即可得解【解答】解:如图,连接DE,PCD是PCD沿PD折叠得到,CPDCPD,PE平分BPC,BPECPE,EPC+DPC18090,DPE是直角三角形,BPx,BEy,AB3,BC5,AEABBE3y,CPBCBP5x,在RtBEP中,PE2BP2+BE2x2+y2,在RtADE中,DE2AE

    18、2+AD2(3y)2+52,在RtPCD中,PD2PC2+CD2(5x)2+32,在RtPDE中,DE2PE2+PD2,则(3y)2+52x2+y2+(5x)2+32,整理得,6y2x210x,所以yx2+x(0x5),纵观各选项,只有D选项符合故选:D【点评】本题考查了动点问题的函数图象,勾股定理的应用,作出辅助线并证明得到直角三角形,然后在多个直角三角形应用勾股定理是解题的关键二填空题(共5小题,满分15分,每小题3分)11【分析】原式利用二次根式除法法则计算即可得到结果;原式利用五次方根定义计算即可得到结果;原式变形后,逆用积的乘方运算法则计算即可得到结果【解答】解:原式;原式2;原式(

    19、+2)(+2)(2)2014+2故答案为:;2; +2【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键12【分析】直接利用已知得出3的度数,再利用平行线的性质得出答案【解答】解:将一直角三角板的直角顶点放置在两边互相平行的纸条的边上,1+390,23,135,355,2355故答案为:55【点评】此题主要考查了平行线的性质,正确把握平行线的性质是解题关键13【分析】首先根据题意画树状图,然后根据树状图即可求得所有等可能的结果与甲、乙、丙三名学生在同一书店购书的情况数,然后根据概率公式求解即可求得答案【解答】解:画树状图得:由树状图知共有8种等可能结果,其中甲、乙、丙三名学生在同一书

    20、店购书的有2种情况,甲、乙、丙三名学生到同一个书店购书的概率为,故答案为:【点评】此题考查了树状图法求概率注意树状图法适合两步或两步以上完成的事件,树状图法可以不重不漏的表示出所有等可能的结果,用到的知识点为:概率所求情况数与总情况数之比14【分析】过点O作OEAC,交AC于D,连接OC,BC,证明弓形OC的面积弓形BC的面积,这样图中阴影部分的面积OBC的面积【解答】解:过点O作OEAC,交AC于D,连接OC,BC,ODDEOEOA,A30,AB是O的直径,ACB90,B60,OBOC2,OBC是等边三角形,OCBC,弓形OC面积弓形BC面积,阴影部分面积SOBC2故答案为:【点评】本题考查

    21、了折叠问题、扇形的面积解决本题的关键是把阴影部分的面积转化为OBC的面积15【分析】根据题意作出合适的辅助线,利用三角形中位线定理、三角形的相似可以求得PH和QH的长,然后根据勾股定理即可求得PQ的长【解答】解:作QMEF于点M,作PNEF于点N,作QHPN交PN的延长线于点H,如右图所示,正方形ABCD的边长为12,BE8,EFBC,点P、Q分别为DG、CE的中点,DF4,CF8,EF12,MQ4,PN2,MF6,QMEF,PNEF,BE8,DF4,EGBFGD,即,解得,FG4,FN2,MN624,QH4,PHPN+QM,PH6,PQ,故答案为:2【点评】本题考查三角形中位线定理、正方形的

    22、性质、勾股定理、三角形相似,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答三解答题(共8小题,满分75分)16【分析】先根据分式混合运算顺序和运算法则化简原式,再由分式有意义的条件选取合适的x的值代入计算可得【解答】解:原式,当x2时,原式【点评】本题主要考查分式的化简求值,解题的关键是熟练掌握分式的混合运算顺序和运算法则及分式有意义的条件17【分析】(1)在O内任取一点M,连接AM,BM;(2)观察图形,可知:一条弧所对的圆外角小于这条弧所对的圆周角;一条弧所对的圆内角大于这条弧所对的圆周角,此问得解;(3)(i)BM与O相交于点C,连接AC,利用三角形外角的性质可

    23、得出ACBM+MAC,进而可证出ACBM;(ii)延长BM交O于点C,连接AC,利用三角形外角的性质可得出AMBACB+CAM,进而可证出AMBACB;(4)由(2)的结论,可知:当过点F,H的圆与DE相切时,切点即为所求的点P【解答】解:(1)如图2所示(2)观察图形,可知:一条弧所对的圆外角小于这条弧所对的圆周角;一条弧所对的圆内角大于这条弧所对的圆周角故答案为:小于;大于(3)证明:(i)如图1,BM与O相交于点C,连接ACACBM+MAC,ACBM;(ii)如图4,延长BM交O于点C,连接ACAMBACB+CAM,AMBACB(4)如图3,当过点F,H的圆与DE相切时,切点即为所求的点

    24、P【点评】本题考查了圆的综合应用以及三角形外角的性质,解题的关键是:(1)依照题意画出图形;(2)观察图形,找出结论;(3)利用三角形外角的性质证出:一条弧所对的圆外角小于这条弧所对的圆周角;一条弧所对的圆内角大于这条弧所对的圆周角;(4)利用(2)的结论找出点P的位置18【分析】(1)结合两个统计图,根据条形图得出文学类人数为:70,利用扇形图得出文学类所占百分比为:35%,即可得出总人数;(2)利用科普类所占百分比为:30%,则科普类人数为:n20030%60人,即可得出m的值;(3)根据圆心角计算公式,即可得到艺术类读物所在扇形的圆心角;(4)根据喜欢其他类读物人数所占的百分比,即可估计

    25、6000册中其他读物的数量【解答】解:(1)根据条形图得出文学类人数为:70,利用扇形图得出文学类所占百分比为:35%,故本次调查中,一共调查了:7035%200人,故答案为:200;(2)根据科普类所占百分比为:30%,则科普类人数为:n20030%60人,m20070306040人,故m40,n60;故答案为:40,60;(3)艺术类读物所在扇形的圆心角是:36072,故答案为:72;(4)由题意,得 80001200(册)答:学校购买其他类读物1200册比较合理【点评】此题主要考查了条形图表和扇形统计图综合应用,将条形图与扇形图结合得出正确信息求出调查的总人数是解题关键19【分析】(1)

    26、过点F作FNDK于N,过点E作EMFN于M求出MF、FN的值即可解决问题;(2)求出OH、PH的值即可判断;【解答】解:(1)过点F作FNDK于N,过点E作EMFN于MEF+FG166,FG100,EF66,FGK80,FN100sin8098,EFG125,EFM1801251045,FM66cos453346.53,MNFN+FM144.5,此时小强头部E点与地面DK相距约为144.5cm(2)过点E作EPAB于点P,延长OB交MN于HAB48,O为AB中点,AOBO24,EM66sin4546.53,PH46.53,GN100cos8017,CG15,OH24+15+1756,OPOHP

    27、H5646.539.479.5,他应向前9.5cm【点评】本题考查直角三角形的应用,锐角三角函数等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型20【分析】(1)利用待定系数法求反比例函数的解析式;(2)根据反比例函数图象上点的坐标特征,将B、C、D三点分别代入进行验证即可;(3)根据该反比例函数所在的象限、以及该函数的单调性画出图象【解答】解:设该反比例函数的解析式为y(k0),则2,解得,k4;所以,该反比例函数的解析式为y;40,该反比例函数经过第二、四象限,且在每一象限内,y随x的增大而增大;(2)由(1)知,该反比例函数的解析式为y,则xy42484,

    28、3()4,2()4,点B(4,2)不在该函数图象上,点C(3,)和D()在该函数图象上;(3)反比例函数的图象过点A(2,2),由(1)知,该反比例函数经过第二、四象限,且在每一象限内,y随x的增大而增大;所以其图象如图所示:【点评】本题考查了反比例函数的图象与性质、待定系数法求反比例函数的解析式以及反比例函数图象上点的坐标特征经过函数的某点一定在该函数的图象上21【分析】(1)设A种货物运输了x吨,设B种货物运输了y吨,根据题意可得到一个关于x的不等式组,解方程组求解即可;(2)运费可以表示为x的函数,根据函数的性质,即可求解【解答】解:(1)设A种货物运输了x吨,设B种货物运输了y吨,依题

    29、意得:,解之得:答:物流公司月运输A种货物100吨,B种货物150吨(2)设A种货物为a吨,则B种货物为(330a)吨,依题意得:a(330a)2,解得:a220,设获得的利润为W元,则W70a+40(330a)30a+13200,根据一次函数的性质,可知W随着a的增大而增大当W取最大值时a220,即W19800元所以该物流公司7月份最多将收到19800元运输费【点评】本题考查二元一次方程组的应用和一元一次不等式组以及一次函数性质的应用,将现实生活中的事件与数学思想联系起来,读懂题意列出方程组和不等式即可求解22【分析】(1)利用三角形的中位线得出PMCE,PNBD,进而判断出BDCE,即可得

    30、出结论,再利用三角形的中位线得出PMCE得出DPMDCA,最后用互余即可得出结论;(2)先判断出ABDACE,得出BDCE,同(1)的方法得出PMBD,PNBD,即可得出PMPN,同(1)的方法即可得出结论;(3)方法1:先判断出MN最大时,PMN的面积最大,进而求出AN,AM,即可得出MN最大AM+AN,最后用面积公式即可得出结论方法2:先判断出BD最大时,PMN的面积最大,而BD最大是AB+AD14,即可得出结论【解答】解:(1)点P,N是BC,CD的中点,PNBD,PNBD,点P,M是CD,DE的中点,PMCE,PMCE,ABAC,ADAE,BDCE,PMPN,PNBD,DPNADC,P

    31、MCE,DPMDCA,BAC90,ADC+ACD90,MPNDPM+DPNDCA+ADC90,PMPN,故答案为:PMPN,PMPN;(2)PMN是等腰直角三角形由旋转知,BADCAE,ABAC,ADAE,ABDACE(SAS),ABDACE,BDCE,利用三角形的中位线得,PNBD,PMCE,PMPN,PMN是等腰三角形,同(1)的方法得,PMCE,DPMDCE,同(1)的方法得,PNBD,PNCDBC,DPNDCB+PNCDCB+DBC,MPNDPM+DPNDCE+DCB+DBCBCE+DBCACB+ACE+DBCACB+ABD+DBCACB+ABC,BAC90,ACB+ABC90,MPN

    32、90,PMN是等腰直角三角形;(3)方法1:如图2,同(2)的方法得,PMN是等腰直角三角形,MN最大时,PMN的面积最大,DEBC且DE在顶点A上面,MN最大AM+AN,连接AM,AN,在ADE中,ADAE4,DAE90,AM2,在RtABC中,ABAC10,AN5,MN最大2+57,SPMN最大PM2MN2(7)2方法2:由(2)知,PMN是等腰直角三角形,PMPNBD,PM最大时,PMN面积最大,点D在BA的延长线上,BDAB+AD14,PM7,SPMN最大PM272【点评】此题属于几何变换综合题,主要考查了三角形的中位线定理,等腰直角三角形的判定和性质,全等三角形的判断和性质,直角三角

    33、形的性质的综合运用;解(1)的关键是判断出PMCE,PNBD,解(2)的关键是判断出ABDACE,解(3)的关键是判断出MN最大时,PMN的面积最大23【分析】(1)由A、B两点的坐标,利用待定系数法即可求得抛物线解析式;(2)连接CD,则可知CDx轴,由A、F的坐标可知F、A到CD的距离,利用三角形面积公式可求得ACD和FCD的面积,则可求得四边形ACFD的面积;由题意可知点A处不可能是直角,则有ADQ90或AQD90,当ADQ90时,可先求得直线AD解析式,则可求出直线DQ解析式,联立直线DQ和抛物线解析式则可求得Q点坐标;当AQD90时,设Q(t,t2+2t+3),设直线AQ的解析式为y

    34、k1x+b1,则可用t表示出k,设直线DQ解析式为yk2x+b2,同理可表示出k2,由AQDQ则可得到关于t的方程,可求得t的值,即可求得Q点坐标【解答】解:(1)由题意可得,解得,抛物线解析式为yx2+2x+3;(2)yx2+2x+3(x1)2+4,F(1,4),C(0,3),D(2,3),CD2,且CDx轴,A(1,0),S四边形ACFDSACD+SFCD23+2(43)4;点P在线段AB上,DAQ不可能为直角,当AQD为直角三角形时,有ADQ90或AQD90,i当ADQ90时,则DQAD,A(1,0),D(2,3),直线AD解析式为yx+1,可设直线DQ解析式为yx+b,把D(2,3)代

    35、入可求得b5,直线DQ解析式为yx+5,联立直线DQ和抛物线解析式可得,解得或,Q(1,4);ii当AQD90时,设Q(t,t2+2t+3),设直线AQ的解析式为yk1x+b1,把A、Q坐标代入可得,解得k1(t3),设直线DQ解析式为yk2x+b2,同理可求得k2t,AQDQ,k1k21,即t(t3)1,解得t,当t时,t2+2t+3,当t时,t2+2t+3,Q点坐标为(,)或(,);综上可知Q点坐标为(1,4)或(,)或(,)【点评】本题为二次函数的综合应用,涉及待定系数法、三角形的面积、二次函数的性质、直角三角形的性质及分类讨论思想等知识在(1)中注意待定系数法的应用,在(2)中注意把四边形转化为两个三角形,在利用互相垂直直线的性质是解题的关键本题考查知识点较多,综合性较强,难度适中

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:2019年河南省信阳市潢川县中考数学一模试卷(含答案解析).doc
    链接地址:https://www.163wenku.com/p-286228.html
    欢乐马
         内容提供者      个人认证 实名认证

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库