第五章-高分子液晶材料课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《第五章-高分子液晶材料课件.ppt》由用户(三亚风情)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 第五 高分子 液晶 材料 课件
- 资源描述:
-
1、Chapter five Liquid Crystalline Polymers液晶数字显示液晶数字显示 生活中的液晶显示材料生活中的液晶显示材料主要内容主要内容 液晶的研究历程液晶的研究历程 液晶的特点及分类液晶的特点及分类 液晶高分子分类液晶高分子分类 主链型液晶高分子的合成(分子设计)主链型液晶高分子的合成(分子设计) 液晶高分子的应用液晶高分子的应用Research milestones of LCPs 1888 1888 奥地利植物学家莱尼茨尔(奥地利植物学家莱尼茨尔(F.ReinitzerF.Reinitzer) ) 首次发现液晶首次发现液晶 1889 1889 德国物理学家莱曼(
2、德国物理学家莱曼(O.LehmannO.Lehmann) )使用他使用他 亲自设计,在当时作为最新式的附有加亲自设计,在当时作为最新式的附有加 热装置的偏光显微镜进行了观察,并提热装置的偏光显微镜进行了观察,并提 出出“液晶液晶”概念概念 1923 Vorlander1923 Vorlander D. D. 提出聚合物液晶概念提出聚合物液晶概念 1937 1937 在烟草花叶病毒的悬浮液中观察到液晶相,在烟草花叶病毒的悬浮液中观察到液晶相,溶溶 液型液晶液型液晶1937 1937 对液晶作出理论的解释对液晶作出理论的解释 Flory theoryFlory theory19601960s s
3、根据胆甾醇的颜色变化设计测定表面温度的温度计根据胆甾醇的颜色变化设计测定表面温度的温度计19681968 发现向列型液晶的电光效应(发现向列型液晶的电光效应(用电刺激液晶时,其用电刺激液晶时,其 透光方式会改变透光方式会改变),开创了液晶电子学,出现了数),开创了液晶电子学,出现了数 字、文字液晶显示器件字、文字液晶显示器件1970s 1970s 各种商品化的熔融型液晶产品各种商品化的熔融型液晶产品 VectraVectra ( (高强度纤维,高强度纤维, CelaneseCelanese公司公司) ) Xydar Xydar(DartcoDartco) X7G(Eastman) X7G(Ea
4、stman) http:/ milestones of LCPs奥地利植物学家莱尼茨尔测定有机物的熔点时,发现某些奥地利植物学家莱尼茨尔测定有机物的熔点时,发现某些有机物(有机物(胆甾醇的苯甲酸酯和醋酸酯胆甾醇的苯甲酸酯和醋酸酯)熔化后会经历一个)熔化后会经历一个不透明的不透明的呈白色浑浊液体状态呈白色浑浊液体状态,并发出多彩而美丽的珍珠,并发出多彩而美丽的珍珠光泽,只有继续加热到某一温度才会变成透明清亮的液体。光泽,只有继续加热到某一温度才会变成透明清亮的液体。第二年,德国物理学家莱曼使用他亲自设计,在当时作为第二年,德国物理学家莱曼使用他亲自设计,在当时作为最新式的附有加热装置的最新式的附
5、有加热装置的偏光显微镜偏光显微镜对这些对这些酯酯类化合物进类化合物进行了观察。他发现,这类白而浑浊的液体外观上虽然属于行了观察。他发现,这类白而浑浊的液体外观上虽然属于液体,但却液体,但却显示出各向异性晶体特有的双折射性显示出各向异性晶体特有的双折射性。于是莱。于是莱曼将其命名为曼将其命名为“液态晶体液态晶体”,这就是,这就是“液晶液晶”名称的由名称的由来。来。 液晶的发现液晶的发现 1963年,年,RCA公司的威利阿姆斯发现了用电刺激液晶时,其透光公司的威利阿姆斯发现了用电刺激液晶时,其透光方式会改变。方式会改变。5年后,同一公司的哈伊卢马以亚小组,发明了应用年后,同一公司的哈伊卢马以亚小组
6、,发明了应用此性质的显示装置。这就是液晶显示屏(此性质的显示装置。这就是液晶显示屏(LiquidCrystalDisplay)的开端。而当初,液晶作为显示屏的材料来说,是很不稳定的。因的开端。而当初,液晶作为显示屏的材料来说,是很不稳定的。因此作为商业利用,尚存在着问题。然而,此作为商业利用,尚存在着问题。然而,1973年,格雷教授(英国年,格雷教授(英国哈尔大学)发现了稳定的液晶材料(联苯系)。哈尔大学)发现了稳定的液晶材料(联苯系)。1976年,由年,由SHARP公司在世界上首次,将其应用于计算器(公司在世界上首次,将其应用于计算器(EL-8025)的显示)的显示屏中,此材料目前已成为屏中
7、,此材料目前已成为LCD材料的基础材料的基础 液晶分子形状子构造液晶分子形状子构造CB(Cholesterol Benzoate): the first thermotropic liquid crystal胆甾醇苯甲酸酯胆甾醇苯甲酸酯N-(4-甲氧基亚苄基甲氧基亚苄基)对丁基苯胺对丁基苯胺 (N-(4-Methoxybenzal)-p-butylaniline )正戊基联苯氰(正戊基联苯氰(4-Cyano-4-n-pentylbiphenyl ) 液晶液晶 Liquid crystals(LCs) 液晶是介于晶态和液态之间的一种热力学液晶是介于晶态和液态之间的一种热力学稳定的相态,它既具有晶
8、态的各向异性,稳定的相态,它既具有晶态的各向异性,又具有液态的流动性又具有液态的流动性液晶的特点液晶的特点形成液晶的物质通常具有刚性的分子结构。导形成液晶的物质通常具有刚性的分子结构。导致液晶形成的刚性结构部分称为致液晶形成的刚性结构部分称为致晶单元致晶单元;分子分子呈棒状或盘状呈棒状或盘状的构象;的构象;须具有在液态下维持分子的某种有序排列所须具有在液态下维持分子的某种有序排列所必必需的凝聚力需的凝聚力;这种凝聚力通常是与结构中的这种凝聚力通常是与结构中的强极性基团、高强极性基团、高度可极化基团、氢键度可极化基团、氢键等相联系的。等相联系的。(小分子)液晶的特征(小分子)液晶的特征 几何形状
9、:棒状或者盘形几何形状:棒状或者盘形 分子链柔顺性:为保持其几何形态分子具分子链柔顺性:为保持其几何形态分子具有刚性结构有刚性结构棒状致晶单元棒状致晶单元盘状致晶单元盘状致晶单元液晶高分子液晶高分子 定义:定义:Polymers that can exhibit liquid crystallinity 某些液晶分子可连接成大分子,或者可通过官能团某些液晶分子可连接成大分子,或者可通过官能团的化学反应连接到高分子骨架上。这些高分子化的的化学反应连接到高分子骨架上。这些高分子化的液晶在一定条件下仍可能保持液晶的特征,就形成液晶在一定条件下仍可能保持液晶的特征,就形成高分子液晶。高分子液晶。 显示
10、出一般液晶分子的特点显示出一般液晶分子的特点 有聚合物的多性能以及多用途有聚合物的多性能以及多用途 结构复杂结构复杂 构成:构成:致晶单元致晶单元 + 高分子链高分子链 致晶单元致晶单元(mesogens) (rod-like , disk-like elements) must be incorporated into polymer chains 与小分子液晶相比,液晶高分子具有下列特殊与小分子液晶相比,液晶高分子具有下列特殊性:性: 1)热稳定性大幅度提高;)热稳定性大幅度提高; 2)热致性高分子液晶有较大的相区间温度;)热致性高分子液晶有较大的相区间温度; 3)粘度大,流动行为与一般溶
11、液显著不同)粘度大,流动行为与一般溶液显著不同高分子液晶的特点:高分子液晶的特点:从结构上分析,除致晶单元、取代基、端基的影响外,高分子链从结构上分析,除致晶单元、取代基、端基的影响外,高分子链的性质、连接基团的性质均对高分子液晶的相行为产生影响的性质、连接基团的性质均对高分子液晶的相行为产生影响液晶高分子的分类液晶高分子的分类u根据高分子链中致晶单元的排列形式和有序性的不根据高分子链中致晶单元的排列形式和有序性的不同,高分同,高分子液晶可分为:子液晶可分为:近晶型近晶型、向列型向列型和和胆甾型胆甾型。至今为止大部分高分子液晶属于至今为止大部分高分子液晶属于向列型液晶。向列型液晶。u主链型液晶
12、大多数为高强度、高模量材料主链型液晶大多数为高强度、高模量材料u侧链型液晶大多数为功能性材料侧链型液晶大多数为功能性材料向列型向列型 流动性最好,熔融体或者溶液粘度流动性最好,熔融体或者溶液粘度最小,最小,一维有序一维有序近晶型近晶型 最接近晶体的特性、粘度存在各向最接近晶体的特性、粘度存在各向异性,异性,二位有序二位有序胆甾醇型胆甾醇型 具有很高的旋光性,可以使白色具有很高的旋光性,可以使白色光发生色散,有彩虹般的颜色光发生色散,有彩虹般的颜色向列型液晶向列型液晶向列型液晶(向列型液晶(Nematic liquid crystals,N) 在向列型液晶中,棒状分子只维持一维有序。在向列型液晶
13、中,棒状分子只维持一维有序。 它们互相平行排列,但重心排列则是无序的。它们互相平行排列,但重心排列则是无序的。 在外力作用下,棒状分子容易沿流动方向取向,并可在在外力作用下,棒状分子容易沿流动方向取向,并可在 取向方向互相穿越。因此,向列型液晶的宏观粘度取向方向互相穿越。因此,向列型液晶的宏观粘度 一般都比较小,是三种结构类型的液晶中流动性最一般都比较小,是三种结构类型的液晶中流动性最 好的一种。好的一种。近晶型液晶近晶型液晶近晶型液晶(近晶型液晶(Smecticliquidcrystals,S)l 近晶型液晶近晶型液晶是所有液晶中最接近结晶结构的一是所有液晶中最接近结晶结构的一类,因此得名。
14、类,因此得名。l 在这类液晶中,棒状分子互相平行排列成层状结构。在这类液晶中,棒状分子互相平行排列成层状结构。分子的长轴垂直于层状结构平面。层内分子排列具有分子的长轴垂直于层状结构平面。层内分子排列具有二维有序性。二维有序性。l 但这些层状结构并不是严格刚性的,分子可在本层内但这些层状结构并不是严格刚性的,分子可在本层内运动,但不能来往于各层之间。因此,层状结构之间运动,但不能来往于各层之间。因此,层状结构之间可以相互滑移,而垂直于层片方向的流动却很困难。可以相互滑移,而垂直于层片方向的流动却很困难。l 这种结构决定了近晶型液晶的粘度具有各向异性。但这种结构决定了近晶型液晶的粘度具有各向异性。
15、但在通常情况下,层片的取向是无规的,因此,宏观上表在通常情况下,层片的取向是无规的,因此,宏观上表现为在各个方向上都非常粘滞。现为在各个方向上都非常粘滞。l 根据晶型的细微差别,近晶型液晶还可以再分成根据晶型的细微差别,近晶型液晶还可以再分成9个小个小类。按发现年代的先后依次计为类。按发现年代的先后依次计为SA、SB、SI。l 近晶型液晶结构上的差别对于非线性光学特性有一定影近晶型液晶结构上的差别对于非线性光学特性有一定影响。响。胆甾型液晶胆甾型液晶胆甾型液晶胆甾型液晶(Cholestericliquidcrystals,Ch)在属于胆甾型液晶的物质中,有许多是胆甾醇在属于胆甾型液晶的物质中,
16、有许多是胆甾醇的衍生物,因此得名。的衍生物,因此得名。但实际上,许多胆甾型液晶的分子结构与胆甾醇结构毫但实际上,许多胆甾型液晶的分子结构与胆甾醇结构毫无关系。但它们都有导致相同光学性能和其他特性的共无关系。但它们都有导致相同光学性能和其他特性的共同结构。同结构。在这类液晶中,分子是长而扁平的。它们依靠端基的在这类液晶中,分子是长而扁平的。它们依靠端基的作用,平行排列成层状结构,长轴与层片平面平行。作用,平行排列成层状结构,长轴与层片平面平行。n 层内分子排列与向列型类似,而相邻两层间,层内分子排列与向列型类似,而相邻两层间,分子长轴的取向依次规则地扭转一定的角度,层层分子长轴的取向依次规则地扭
17、转一定的角度,层层累加而形成螺旋结构。累加而形成螺旋结构。n 分子长轴方向在扭转了分子长轴方向在扭转了360以后回到原来的方向。以后回到原来的方向。n 两个取向相同的分子层之间的距离称为两个取向相同的分子层之间的距离称为螺距螺距,是表征胆,是表征胆甾型液晶的重要参数。甾型液晶的重要参数。n 由于扭转分子层的作用,照射在其上的光将由于扭转分子层的作用,照射在其上的光将发生偏发生偏振旋转振旋转,使得胆甾型液晶通常具有彩虹般的漂亮颜,使得胆甾型液晶通常具有彩虹般的漂亮颜色,并有色,并有极高的旋光能力极高的旋光能力。根据产生液晶的条件根据产生液晶的条件溶致性液晶、热致性液晶、压致型液晶、溶致性液晶、热
18、致性液晶、压致型液晶、流致型液晶等等。流致型液晶等等。溶致性液晶和热致性液晶溶致性液晶和热致性液晶 热致性液晶(热致性液晶(Thermotropic LC)固体固体液晶液晶各向同性液体各向同性液体热热冷冷热热冷冷 溶致型液晶(溶致型液晶(Lyotropic LC)固体固体液晶液晶各向同性液体各向同性液体+ 溶剂溶剂+ 溶剂溶剂- 溶剂溶剂- 溶剂溶剂压致型液晶和流致型液晶压致型液晶和流致型液晶 聚乙烯聚乙烯在某一压力下可出现液晶态,是一在某一压力下可出现液晶态,是一种种压致型液晶压致型液晶 聚对苯二甲酰对氨基苯甲酰肼在施加流动聚对苯二甲酰对氨基苯甲酰肼在施加流动场后可呈现液晶态,属于场后可呈现
19、液晶态,属于流致型液晶流致型液晶根据液晶高分子链特点根据液晶高分子链特点 主链型、侧链型主链型、侧链型 主链型主链型Main-chain LCPs主链型液晶和侧链型高分子液晶中根据致晶单主链型液晶和侧链型高分子液晶中根据致晶单元的连接方式和形态不同又有许多种类型元的连接方式和形态不同又有许多种类型高分子液晶的分子结构特征高分子液晶的分子结构特征为什么可以形成液晶态?为什么可以形成液晶态?分子结构在液晶形成过程中起着主要作用分子结构在液晶形成过程中起着主要作用构效关系构效关系u 研究表明,能够形成液晶的物质通常在分子研究表明,能够形成液晶的物质通常在分子 结构中具有刚性部分,称为结构中具有刚性部
20、分,称为致晶单元致晶单元。u 从外形上看,致晶单元通常呈现从外形上看,致晶单元通常呈现近似棒状或片近似棒状或片 状的形态状的形态,这样有利于分子的有序堆砌。,这样有利于分子的有序堆砌。u 这是液晶分子在液态下维持某种有序排列所这是液晶分子在液态下维持某种有序排列所 必须的结构因素。必须的结构因素。u 在高分子液晶中这些致晶单元被柔性链以各在高分子液晶中这些致晶单元被柔性链以各 种方式连接在一起。种方式连接在一起。致晶单元结构致晶单元结构XRR1通过两个苯环或脂肪环、芳香杂环,通过一个刚性结构(通过两个苯环或脂肪环、芳香杂环,通过一个刚性结构(X)连接而成连接而成阻止两个苯环旋转阻止两个苯环旋转
21、-X -端基端基R致晶单元形状对液晶形态的形成有密切关系。致晶单元形状对液晶形态的形成有密切关系。致晶单元呈棒状的,有利于生成向列型或近晶型液致晶单元呈棒状的,有利于生成向列型或近晶型液晶;致晶单元呈片状或盘状的,易形成胆甾醇型或晶;致晶单元呈片状或盘状的,易形成胆甾醇型或盘型液晶盘型液晶。另外,高分子骨架的结构、致晶单元与。另外,高分子骨架的结构、致晶单元与高分子骨架之间柔性链的长度和体积对致晶单元的高分子骨架之间柔性链的长度和体积对致晶单元的旋转和平移会产生影响,因此也会对液晶的形成和旋转和平移会产生影响,因此也会对液晶的形成和晶相结构产生作用。在高分子链上或者致晶单元上晶相结构产生作用。
22、在高分子链上或者致晶单元上带有不同结构和性质的基团,都会对高分子液晶的带有不同结构和性质的基团,都会对高分子液晶的偶极矩、电、光、磁等性质产生影响。偶极矩、电、光、磁等性质产生影响。影响高分子液晶形态和性能的因素影响高分子液晶形态和性能的因素影响高分子液晶形态与性能的因素包括外在因影响高分子液晶形态与性能的因素包括外在因素和内在因素两部分。内在因素为素和内在因素两部分。内在因素为分子结构、分子分子结构、分子组成和分子间力组成和分子间力。外部因素则主要包括。外部因素则主要包括环境温度、环境温度、溶剂溶剂等。等。分子结构:分子结构:高分子液晶分子中必须含有具有刚性的致晶高分子液晶分子中必须含有具有
23、刚性的致晶单元。刚性结构不仅有利于在固相中形成结晶,而且单元。刚性结构不仅有利于在固相中形成结晶,而且在转变成液相时也有利于保持晶体的有序度。在转变成液相时也有利于保持晶体的有序度。在在热致性高分子液晶热致性高分子液晶中,对相态和性能影响最大中,对相态和性能影响最大的因素是的因素是分子构型分子构型和和分子间力分子间力。分子间力大和分子规整度高虽然有利于液晶形成,分子间力大和分子规整度高虽然有利于液晶形成,但是相转变温度也会因为分子间力的提高而提高,但是相转变温度也会因为分子间力的提高而提高,使液晶形成温度提高,不利于液晶的加工和使用。使液晶形成温度提高,不利于液晶的加工和使用。控制控制温度温度
24、是形成是形成热致性热致性高分子液晶和确定晶相结高分子液晶和确定晶相结构的主要手段构的主要手段 对于溶致性液晶,溶剂与高分子液晶分子之间对于溶致性液晶,溶剂与高分子液晶分子之间的作用起非常重要的作用的作用起非常重要的作用。溶剂的结构和极性决定。溶剂的结构和极性决定了与液晶分子间的亲和力的大小,进而影响液晶分了与液晶分子间的亲和力的大小,进而影响液晶分子在溶液中的构象,能直接影响液晶的形态和稳定子在溶液中的构象,能直接影响液晶的形态和稳定性。性。控制高分子液晶控制高分子液晶溶液的浓度溶液的浓度是控制溶液型高分是控制溶液型高分子液晶相结构的主要手段。子液晶相结构的主要手段。主链型溶致性高分子液晶的种
展开阅读全文