书签 分享 收藏 举报 版权申诉 / 84
上传文档赚钱

类型第13章离散小波变换课件.ppt

  • 上传人(卖家):三亚风情
  • 文档编号:2860360
  • 上传时间:2022-06-05
  • 格式:PPT
  • 页数:84
  • 大小:3.18MB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《第13章离散小波变换课件.ppt》由用户(三亚风情)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    13 离散 变换 课件
    资源描述:

    1、南京大学 软件学院离散小波变换离散小波变换南京大学 软件学院主要内容l 引言l 时频展开l 使用Matlabl 若干应用场景南京大学 软件学院引言l小波变换的动机福利叶变换是非常有效地计算工具但是是时间亚元变换,在很多场合不满足需求(石油勘探、乐谱分析)l小波的含义“小”+“波”时频展开数学显微镜南京大学 软件学院时频展开l希望定义一种工具能帮助计算信号x(t)的瞬时傅里叶变换,记为X(,F)l如何定义一组能够表现出信号瞬时性的基函数,该基函数必须包括两个基本变量时间和频率F南京大学 软件学院时频展开主要内容1. 短时傅里叶变换STFT2. Gabor变换GT3. 连续小波变换CWT4. 小波

    2、变换WT南京大学 软件学院短时傅里叶变换STFT确定信号局部频率特性的比较简单的方法是在时刻附近对信号加窗,然后计算傅里叶变换。X(,F)=STFTx(t)=FTx(t)w(t- )其中,w(t-)是一个以时刻为中心的窗函数,注意信号x(t)中的时间t和X(,F)中的。南京大学 软件学院窗函数w根据进行了时移,扩展傅里叶变换表达式2( ,)( ) ()jFtXFx t w tedt短时傅里叶变换操作示意南京大学 软件学院问题实际运用中处理的问题与上述描述恰好相反:给定一个信号,希望能够在时域和频域上定位信号发生的事件,因此时间和频率F都是不确定的,即按上述的分析不可行(结果不确定或有误差)分析

    3、中,分辨率的损失是由于窗函数w(t)的时域宽度及傅里叶变换的频率带宽所决定的;信号不能同时在时域和频域准确定位信号不能同时在时域和频域准确定位测不准定理测不准定理南京大学 软件学院Gabor变换引言l STFT将一个连续时间变量t的信号x(t)变换为有两个连续时间变量的X(,F)l 意味着STFT包含了很多的冗余信息 将频率F离散化,F=Kf0 将时间离散化,在=mT0采样Gabor变换:变换:Xm,k=X(mT0,kF0)南京大学 软件学院Gabor变换l 通过Gabor变换,信号x(t)被展开为:0,2,0( ) , ( )( )()m km kjkF tm kx tX m k etetw

    4、 tmT e其中:l Gabor变换公式:0_20 , ( )()jkF tX m kx t w tmT edt南京大学 软件学院l 小波变换是强有力的时频分析(处理)工具,是在克服傅立叶变换缺点的基础上发展而来的。已成功应用于很多领域,如信号处理、图像处理、模式识别等。l 小波变换的一个重要性质是它在时域和频域均具有很好的局部化特征,它能够提供目标信号各个频率子段的频率信息。这种信息对于信号分类是非常有用的。l 小波变换一个信号为一个小波级数,这样一个信号可由小波系数来刻画。小波变换南京大学 软件学院基本小波l 也称为小波母函数l 定义如下:22R)( ),)|)|)ttL Rwwdwwt

    5、令 ( 为一平方可积函数,即 (如其傅里叶变换 (满足条件:(则称 ( 是小波。紧支性紧支性:在有限区域内迅速衰减到在有限区域内迅速衰减到0容许性条件容许性条件南京大学 软件学院小波的特点l 具有有限的持续时间、突变的频率和振幅l 波形可以是不规则的,也可以是不对称的l 在整个时间范围里的幅度平均值为零l 比较正弦波南京大学 软件学院部分小波波形南京大学 软件学院小波基函数12,)(),0,),aatttaaRata将小波母函数 ( 进行伸缩和平移,令伸缩因子(称尺度因子)为a,平移因子为 ,则:(则称( 是依赖参数的小波基函数。将信号在这个函数系上分解,就得到连续小波变换将信号在这个函数系上

    6、分解,就得到连续小波变换南京大学 软件学院小波基函数12,)(),0,),aatttaaRata将小波母函数 ( 进行伸缩和平移,令伸缩因子(称尺度因子)为a,平移因子为 ,则:(则称( 是依赖参数的小波基函数。将信号在这个函数系上分解,就得到连续小波变换将信号在这个函数系上分解,就得到连续小波变换南京大学 软件学院缩放(scaled)的概念示例:正弦波的Scaled算法南京大学 软件学院示例:小波的缩放南京大学 软件学院平移(translation)的概念南京大学 软件学院小波分析 深圳大学信息工程学院 小波分析与付里叶变换的比较1.( )2.sin( 3. j tjf teWt付里叶变换是

    7、把能量有限的信号分解到以为正交基的空间上去,小波变换的实质是把该信号分解到所构成的空间上去。付里叶变换用到的基本函数只有; 小 波 函 数 具 有 不 唯 一 性,小 波 函 数 的 选 用是 小 波 分 析 应 用中的 一 个 难 点。在 频 域 中, 付 里 叶 变 换 具 有 较 好 的 局 部 化 能 力, 特 别 是 4. a对 于频 率 成 分 简 单 的 确 定 性 信 号, 付 里 叶 变 换 很 容 易 把 信 号 表 示为 各 频 率 成 分 的 叠 加 和 的 形 式, 但 是在 时 域 中, 付 里 叶 变 换没 有 局 部 化 能 力。小 波 分 析 中,尺 度的 值

    8、 越 大 相 当 于 付 里 叶 变 换 中的 值 越 小。南京大学 软件学院小波分析l 小波变换通过平移母小波(mother wavelet)可获得信号的时间信息,而通过缩放小波的宽度(或者叫做尺度)可获得信号的频率特性。对母小波的缩放和平移操作是为了计算小波的系数,这些系数代表小波和局部信号之间的相互关系。连续小波变换离散小波变换南京大学 软件学院连续小波变换2_,L( )( )1( , )( ),)( )()aRx tx tCWTtW ax ttx tdtaaCWT:Continue Wavelet Transform将任意 (R)空间中的在小波基下进行展开,称这种展开为的连续小波变换(

    9、where:a 缩放因子 时间平移注意:在CWT中,scale和position是连续变化的南京大学 软件学院CWT的变换过程1. 把小波(t)和原始信号f(t)的开始部分进行比较计算系数c 。该系数表示该部分信号与小波的近似程度。系数 c 的值越高表示信号与小波越相似,因此系数c 可以反映这种波形的相关程度把小波向右移,距离为k,得到的小波函数为(t-k),然后重复步骤1和2。再把小波向右移,得到小波(t-2k),重复步骤1和2。按上述步骤一直进行下去,直到信号f(t)结束扩展小波(t),例如扩展一倍,得到的小波函数为(t/2)重复步骤14南京大学 软件学院CWT的变换过程图示南京大学 软件

    10、学院CWT性质1221212001( ), ( )( ),( , )( , )( , )2.( )( , )()( ,).3.( )( , )( )(,)k x k yxyxxxxx ty tL R k kR WakW ak W ax tCWTW ax ttCWTW attax tCWTW axCWTW 、线性时移不变性的为,则的为尺度变换的为,则的为南京大学 软件学院CWT小结l 小波的缩放因子与信号频率之间的关系可以这样来理解。缩放因子小,表示小波比较窄,度量的是信号细节,表示频率w 比较高;相反,缩放因子大,表示小波比较宽,度量的是信号的粗糙程度,表示频率w 比较低。南京大学 软件学院离

    11、散小波变换在计算连续小波变换时,实际上也是用离散的数据进行计算的,只是所用的缩放因子和平移参数比较小而已。不难想象,连续小波变换的计算量是惊人的。为了解决计算量的问题,缩放因子和平移参数都选择2 j( j0的整数)的倍数。使用这样的缩放因子和平移参数的小波变换叫做双尺度小波变换(dyadic wavelet transform),它是离散小波变换(discrete wavelet transform,DWT)的一种形式。南京大学 软件学院离散小波变换定义2_,L( )( , )( )( )1)()22xj kRj kjjx tDWTWj kx tt dtttk任意 (R)空间中的的为:其中(南

    12、京大学 软件学院l 使用离散小波分析得到的小波系数、缩放因子和时间关系如图所示。图(a)是20世纪40年代使用Gabor开发的短时傅立叶变换(short time Fourier transform,STFT)得到的时间-频率关系图图(b)是20世纪80年代使用Morlet开发的小波变换得到的时间-缩放因子(反映频率)关系图。南京大学 软件学院DWT变换方法l 执行离散小波变换的有效方法是使用滤波器该方法是Mallat在1988年开发的,叫做Mallat算法这种方法实际上是一种信号的分解方法,在数字信号处理中称为双通道子带编码l 用滤波器执行离散小波变换的概念如图所示S表示原始的输入信号,通过

    13、两个互补的滤波器产生A和D两个信号A表示信号的近似值(approximations)D表示信号的细节值(detail)南京大学 软件学院l 在许多应用中,信号的低频部分是最重要的,而高频部分起一个“添加剂”的作用。l 比如声音,把高频分量去掉之后,听起来声音确实是变了,但还能够听清楚说的是什么内容。相反,如果把低频部分去掉,听起来就莫名其妙。l 在小波分析中,近似值是大的缩放因子产生的系数,表示信号的低频分量。而细节值是小的缩放因子产生的系数,表示信号的高频分量。双通道滤波过程南京大学 软件学院l 离散小波变换可以被表示成由低通滤波器和高通滤波器组成的一棵树原始信号通过这样的一对滤波器进行的分

    14、解叫做一级分解信号的分解过程可以叠代,也就是说可进行多级分解。如果对信号的高频分量不再分解,而对低频分量连续进行分解,就得到许多分辨率较低的低频分量,形成如图所示的一棵比较大的树。这种树叫做小波分解树(wavelet decomposition tree)分解级数的多少取决于要被分析的数据和用户的需要小波分解树南京大学 软件学院小波包分解树 l 小波分解树表示只对信号的低频分量进行连续分解。如果不仅对信号的低频分量连续进行分解,而且对高频分量也进行连续分解,这样不仅可得到许多分辨率较低的低频分量,而且也可得到许多分辨率较低的高频分量。这样分解得到的树叫做小波包分解树(wavelet packe

    15、t decomposition tree),这种树是一个完整的二进制树。南京大学 软件学院cAj+1cDj+1(h)cDj+1(v)cDj+1(d)cAj2 12 12 12 12 12 1Lo_DHi_DLo_DHi_DLo_DHi_D行列列下采样行下采样二维离散小波变换南京大学 软件学院标准分解流程示意南京大学 软件学院l 非标准分解是指使用一维小波交替地对每一行和每一列像素值进行变换。首先对图像的每一行计算像素对的均值和差值,然后对每一列计算像素对的均值和差值。这样得到的变换结果只有1/4的像素包含均值,再对这1/4的均值重复计算行和列的均值和差值,依此类推。非标准分解的过程如下:非标准

    16、分解南京大学 软件学院非标准分解流程示意南京大学 软件学院小波的应用1.J.Morlet,地震信号分析。2.S.Mallat,二进小波用于图像的边缘检测、图像压缩和重构3.Farge,连续小波用于涡流研究4.Wickerhauser,小波包用于图像压缩。5.Frisch噪声的未知瞬态信号。6.Dutilleux语音信号处理7.H.Kim时频分析8.Beykin正交小波用于算子和微分算子的简化9.信号处理、图像处理、模式识别、语音识别、量子物理、地震勘探信号处理、图像处理、模式识别、语音识别、量子物理、地震勘探流体力学、电磁场、流体力学、电磁场、CTCT成象、机器视觉、机械故障诊断、分形、数值计

    17、算成象、机器视觉、机械故障诊断、分形、数值计算南京大学 软件学院软件包l Math Works:Wavelet Toolboxl Standford: Wave Tooll Yale:WPLabl MathSoft:S+WAVELETSl Aware:WaveTooll Rice: Wavelet ToolBox http:/www.dsp.rice.edu南京大学 软件学院使用Matlabdwt函数idwt函数wcodemat函数dwt2函数wavedec2函数idwt2函数waverec2函数南京大学 软件学院dwt函数功能:1-D离散小波变换格式:cA,cD=dwt(X,wname)cA

    18、,cD=dwt(X,Lo_D,Hi_D)说明:cA,cD=dwt(X,wname)使用指定的小波基函数wname对信号X进行分解,cA和cD分别是近似分量和细节分量;cA,cD=dwt(X,Lo_D,Hi_D)用指定的滤波器组Lo_D,Hi_D对信号进行分解南京大学 软件学院idwt函数功能:1-D离散小波反变换格式:X=idwt(cA,cD,wname)X=idwt(cA,cD,Lo_R,Hi_R)X=idwt(cA,cD,wname,L)X=idwt(cA,cD,Lo_R,Hi_R,L)说明:由近似分量cA和细节分量cD经过小波反变换,选择某小波函数或滤波器组,L为信号X中心附近的几个点南

    19、京大学 软件学院wcodemat函数功能:对数据矩阵进行伪真彩色编码格式:Y=wcodemat(X,NB,OPT,ABSOL)Y= wcodemat(X,NB,OPT)Y= wcodemat(X,NB)Y= wcodemat(X)说明: Y=wcodemat(X,NB,OPT,ABSOL)返回数据矩阵X的编码矩阵Y;NB为编码的最大值(缺省16),OPT是编码方式,row行方式,col列方式mat整个矩阵编码(缺省),ABSOL是函数的控制方式,0返回编码矩阵,1返回数据矩阵的ABS(缺省)南京大学 软件学院dwt2函数功能:2-D离散小波变换格式:cA,cH,cV,cD=dwt2(X,wna

    20、me)cA,cH,cV,cD=dwt2(X,wname)说明:cA近似分量,cH水平细节分量,cV垂直细节分量,cD对角细节分量南京大学 软件学院示例1:对图象做2-D小波分解load woman;nbcol=size(map,1);cA1,cH1,cV1,cD1=dwt2(X,db1);cod_X=wcodemat(X,nbcol);cod_cA1=wcodemat(cA1,nbcol);cod_cH1=wcodemat(cH1,nbcol);cod_cV1=wcodemat(cV1,nbcol);cod_cD1=wcodemat(cD1,nbcol);dec2d=cod_cA1,cod_c

    21、H1;cod_cV1,cod_cD1;subplot(1,2,1);imshow(cod_X,);subplot(1,2,2);imshow(dec2d,);南京大学 软件学院实验结果南京大学 软件学院wavedec2函数功能:2-D信号的多层小波分解格式:C,S=wavedec2(X,N,wname);C,S=wavedec2(X,N,Lo_D,Hi_D);说明:使用小波基函数或指定滤波器对2-D信号X进行N层分解南京大学 软件学院idwt2函数功能:2-D离散反小波变换格式:X=idwt2(cA,cH,cV,cD,wname)X=idwt2(cA,cH,cV,cD,Lo_R,Hi_R)X=

    22、idwt2(cA,cH,cV,cD,wname,S)X=idwt2(cA,cH,cV,cD,Lo_R,Hi_R,S)说明:略南京大学 软件学院示例:2-D小波重构load woman;sX=size(X);cA1,cH1,cV1,cD1=dwt2(X,db4);A0=idwt2(cA1,cH1,cV1,cD1,db4,sX);subplot(1,2,1);imshow(X,);Title(Original Image);subplot(1,2,2);imshow(A0,);Title(Image using idwt2);南京大学 软件学院实验结果南京大学 软件学院示例load woman;n

    23、bcol=size(map,1);cA1,cH1,cV1,cD1=dwt2(X,db1);cod_X=wcodemat(X,nbcol);cod_cA1=wcodemat(cA1,nbcol);cod_cH1=wcodemat(cH1,nbcol);cod_cV1=wcodemat(cV1,nbcol);cod_cD1=wcodemat(cD1,nbcol);nbcol=size(cod_X,1);xcA1,xcH1,xcV1,xcD1=dwt2(cA1,db1);xcod_cA1=wcodemat(xcA1,nbcol);xcod_cH1=wcodemat(xcH1,nbcol);xcod_

    24、cV1=wcodemat(xcV1,nbcol);xcod_cD1=wcodemat(xcD1,nbcol);xdec2d=xcod_cA1,xcod_cH1;xcod_cV1,xcod_cD1;dec2d=xdec2d,cod_cH1;cod_cV1,cod_cD1;subplot(1,2,1);imshow(cod_X,);subplot(1,2,2);imshow(dec2d,);南京大学 软件学院实验结果南京大学 软件学院waverec2函数功能:2-D信号的多层小波重构格式:X=waverec2(C,S,wname)X=waverec2(C,S,Lo_R,Hi_R)说明:略南京大学

    25、软件学院示例:两层分解重构load woman;c,s=wavedec2(X,2,sym4);a0=waverec2(c,s,sym4);subplot(1,2,1);imshow(X,);Title(Original Image);subplot(1,2,2);imshow(a0,);Title(Image using idwt2);南京大学 软件学院实验结果南京大学 软件学院小波分析在信号降噪中的应用分解过程:选定一种小波,对信号进行N层小波(包)分解;作用阀值过程:选择一个阀值,并对细节系数作用重建过程:将处理后的系数经过小波(包)重建原始信号;南京大学 软件学院如何选择一个阈值是关键缺

    26、省的阈值确定模型Birge-Massart策略确定模型小波包中的penalty阈值.本课程不做介绍本课程不做介绍南京大学 软件学院基于Matlab的示例 基于小波变换南京大学 软件学院load noisdopp;x=noisdopp;c,l=wavedec(x,5,db4);ca=wrcoef(a,c,l,db4,5);index=l(2)+1:l(7);c1=c;c1(index)=c(index)/3;x2=waverec(c1,l,db4);subplot(311);plot(x);title(Original Signal);subplot(312);plot(ca);title(Re

    27、cover Signal);subplot(313);plot(x2);title(Recover with dimming);南京大学 软件学院基于Matlab的示例:基于FFT对原始信号进行FFT变换根据频谱,对比我们需要关心的成分,对不需要的频谱进行抑制;进行逆变换南京大学 软件学院信号的频谱20Hz以后迅以后迅速衰减,到速衰减,到50Hz以后几以后几乎没有信号!乎没有信号!南京大学 软件学院利用FFT滤波(使用不同的宽度)南京大学 软件学院load noisdopp;x=noisdopp;y=fft(x,1024);pyy=y.*conj(y);%Yf=1000*(0:512)/102

    28、4;%plot(f,pyy(1:513);%y1=y;y1(10:1024)=0;y2=y;y2(30:1024)=0;y3=y;y3(50:1024)=0;xd1=real(ifft(y1,1024);xd2=real(ifft(y2,1024);xd3=real(ifft(y3,1024);subplot(411);plot(x);title(Original Signal);subplot(412);plot(xd1);title(width=10);subplot(413);plot(xd2);title(width=30);subplot(414);plot(xd3);title(w

    29、idth=50);南京大学 软件学院FFT Vs DWT 1. FFT是一刀切的做法,DWT可以多重选择;2. FFT保留的能量(有时)比DWT多,但是相似性很差;3. 降噪的光滑性和相似性在时间和频率两个空间体上体现的比重不同4. 南京大学 软件学院小波分析在信号压缩中的应用1. 对原始信号进行小波变换2. 零填充3. 编码/量化4. 存储5. 解码6. 重建南京大学 软件学院注意:本例只说明局部化压缩,实际中一般不仅在第1层压缩南京大学 软件学院load wbarb;ca1,ch1,cv1,cd1=dwt2(X,sym4);codca1=wcodemat(ca1,192);codch1=w

    30、codemat(ch1,192);codcv1=wcodemat(cv1,192);codcd1=wcodemat(cd1,192);codx=codca1,codch1;codcv1,codcd1;rca1=ca1;rch1=ch1;rcv1=cv1;rcd1=cd1;rch1(33:97,33:97)=zeros(65,65);rcv1(33:97,33:97)=zeros(65,65);rcd1(33:97,33:97)=zeros(65,65);codrca1=wcodemat(rca1,192);codrch1=wcodemat(rch1,192);codrcv1=wcodemat(

    31、rcv1,192);codrcd1=wcodemat(rcd1,192);codrx=codrca1,codrch1;codrcv1,codrcd1;rx=idwt2(rca1,rch1,rcv1,rcd1,sym4);subplot(221);image(wcodemat(X,192);colormap(map);title(Original Image);subplot(222);image(wcodemat(codx,192);colormap(map);title(dwt);subplot(223);image(wcodemat(rx,192);colormap(map);title(

    32、zip image);subplot(224);image(wcodemat(codrx,192);colormap(map);title(about zip image);南京大学 软件学院DWT VS DCTDCT在压缩过程中不能提供时域信息,而DWT保留了这方面的特性;局部压缩特性南京大学 软件学院小波分析在图象锐化和钝化中的应用图象的钝化(锐化)就是提取出图象中的低频(高频)部分;目前的方法主要集中在时域和频域上;时域方法是依靠在图象上做算子操作,快,但会丢失相关信息;频域需要两次傅里叶变换,计算量大,而且小波变换是上述两种方法的折中。南京大学 软件学院南京大学 软件学院算法比较DCT

    33、法进行高通滤波的结果比较纯粹;小波结果中高频/低频都有;时间复杂度DCT:2*O(nlogn)+O(n)DWT:2*O(n)南京大学 软件学院load chess;blur1=X;blur2=X;ff1=dct2(X);for i=1:256 for j=1:256 ff1(i,j)=ff1(i,j)/(1+(32768/(i*i+j*j)2); endendblur1=idct2(ff1);c,l=wavedec2(X,2,db3);csize=size(c);for i=1:csize(2); if (abs(c(i)300) c(i)=c(i)*2; else c(i)=c(i)/2;

    34、endendblur2=waverec2(c,l,db3);subplot(221);image(wcodemat(X,192);colormap(gray(256);title(Original Image);subplot(222);image(wcodemat(blur1,192);colormap(gray(256);title(DCT Image);subplot(223);image(wcodemat(blur2,192);colormap(gray(256);title(DWT Image);南京大学 软件学院小波分析在故障诊断中的应用小波分析在故障诊断中的应用已取得了极大的成功

    35、。小波分析不仅可以在低信噪比的信号中检测到故障信号, 而且可以滤去噪声恢复原信号,具有很高的应用价值。南京大学 软件学院小波分析在语音信号处理中的应用语音信号处理的目的是得到一些语音参数以便高效地传输或存储. 利用小波分析可以提取语音信号的一些参数, 并对语音信号进行处理. 小波理论应用在语音处理方面的主要内容包括: 清浊音分割;基音检测; 去噪、重建与数据压缩等几个方面. 小波应用于语音信号提取、语音合成、语音增加、波形编码已取得了很好的效果.南京大学 软件学院小波分析在地球物理勘探中的应用在地球物理勘探中, 寻找地壳物质物性参数的奇异性时是非常有意义的. 由于小波变换同时具有空间域和频率域

    36、的局部性, 因此它是描述、检测函数奇异性的有效工具。利用小波变换和分形理论, 对石油、天然气中的实际地震道数据进了奇异性检测和高分辨处理, 这对于油气勘探及地震资料的高分辨处理都具有重大的理论意义和应用价值.南京大学 软件学院小波分析在医学中的应用淋巴细胞微核的识别在医学中有重要的应用价值, 可用于环境检测、药品及各种化合物的毒性检测. 在微核的计算机自动识别中, 用连续小波就可准确提取胞核的边缘. 目前, 人们正在研究利用小波变换进行脑信号的分析与处理, 这样可有效地消除瞬态干扰, 并检测出脑电信号中短时、低能量的瞬态脉冲.南京大学 软件学院小波分析在数学和物理中的应用在数学领域, 小波分析

    37、是数值分析强有力的工具, 能简捷、有效地求解偏微分方程和积分方程, 亦能很好地求解线性问题和非线性问题. 而由此产生的小波有限元方法和小波边界元方法, 极大的丰富了数值分析方法的内容.如:Beylin-Coifman-Rokhlin 的论文为用小波方法与边界元方法求解偏微分方程提供了标准用小波方法分析数学中“处处连续但处处不可导”问题特别有效在物理领域中, 小波表示了量子力学中一种新的凝聚态. 在自适应光学中, 目前有人研究了可利用小波变换进行波前重构. 另外, 小波变换适宜于刻画不规则性, 为湍流研究提供了新的工具.南京大学 软件学院小波分析在工程计算中的应用矩阵运算是工程中经常遇到的问题,

    38、 如稠密矩阵作用于向量(离散情况) 或积分算子作用于函数(连续情况) 的计算. 有时运算量极大, 利用快速小波变换, 可使得运算量大大减少. 另外, 在大型工程有限元分析、机械工程优化设计、自动测试系统设计等方面都有小波分析的应有实例.南京大学 软件学院在股票价格行为分析方面的应用小波分析具有良好的时频局部性, 被认为是分析股市数据的有效工具. 利用小波变换方法对股票价格信号进行奇异性分析, 可提取奇异点并分析其分布规律, 它为股市管理和投资提供了帮助.南京大学 软件学院小波分析提取文件特征用二维多分辨分析方法提取文件参考线, 从而达到能提取文件中任意兴趣信息的目的. 这在各种支票、票据的分析

    39、和识别中具有重大意义.南京大学 软件学院其他方面的应用天体研究气象分析识别信号发送计算机视觉计算机图形学曲线设计湍流远程宇宙的研究南京大学 软件学院小波变换的发展趋势在小波的数学理论基础研究方面 在应用研究方面 与其它理论的结合 南京大学 软件学院在小波的数学理论基础研究方面函数空间的刻画,基数插值小波,高维小波,向量小波,框架的研究还需进一步的深入南京大学 软件学院在应用研究方面 针对具体实际问题,如何构造选择最优小波基及框架的系统方法一直是人们关注的问题之一仿真和实验对小波分析是重要的,且取得了丰硕的成果如何让仿真和实验结果走出实验室,向人们提供具有实用价值的小波分析技术,开发以小波作为工具的高水平分析软件将吸引更多学者来进行研究小波应用的范围虽广, 但真正取得极佳效果的领域并不多,人们也正在挖掘有前景的应用领域.

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:第13章离散小波变换课件.ppt
    链接地址:https://www.163wenku.com/p-2860360.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库