2016年全国各地中考数学试题分类解析汇编(第一辑)第17章+勾股定理.doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《2016年全国各地中考数学试题分类解析汇编(第一辑)第17章+勾股定理.doc》由用户(欢乐马)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2016 全国各地 中考 数学试题 分类 解析 汇编 第一 17 勾股定理 下载 _真题分类汇编_中考复习_数学_初中
- 资源描述:
-
1、 2016年全国各地中考数学试题分类解析汇编(第一辑)第17章 勾股定理一选择题(共10小题)1(2016淄博)如图,正方形ABCD的边长为10,AG=CH=8,BG=DH=6,连接GH,则线段GH的长为()A B2C D105【分析】延长BG交CH于点E,根据正方形的性质证明ABGCDHBCE,可得GE=BEBG=2、HE=CHCE=2、HEG=90,由勾股定理可得GH的长【解答】解:如图,延长BG交CH于点E,在ABG和CDH中,来源:学&科&网Z&X&X&KABGCDH(SSS),AG2+BG2=AB2,1=5,2=6,AGB=CHD=90,1+2=90,5+6=90,又2+3=90,4
2、+5=90,1=3=5,2=4=6,在ABG和BCE中,ABGBCE(ASA),BE=AG=8,CE=BG=6,BEC=AGB=90,GE=BEBG=86=2,同理可得HE=2,在RTGHE中,GH=2,故选:B【点评】本题主要考查正方形的性质、全等三角形的判定与性质、勾股定理及其逆定理的综合运用,通过证三角形全等得出GHE为等腰直角三角形是解题的关键2(2016台州)如图,数轴上点A,B分别对应1,2,过点B作PQAB,以点B为圆心,AB长为半径画弧,交PQ于点C,以原点O为圆心,OC长为半径画弧,交数轴于点M,则点M对应的数是()A B C D来源:学科网【分析】直接利用勾股定理得出OC的
3、长,进而得出答案【解答】解:如图所示:连接OC,由题意可得:OB=2,BC=1,来源:学#科#网Z#X#X#K则AC=,故点M对应的数是:故选:B【点评】此题主要考查了勾股定理,根据题意得出CO的长是解题关键3(2016株洲)如图,以直角三角形a、b、c为边,向外作等边三角形,半圆,等腰直角三角形和正方形,上述四种情况的面积关系满足S1+S2=S3图形个数有()A1 B2 C3 D4【分析】根据直角三角形a、b、c为边,应用勾股定理,可得a2+b2=c2(1)第一个图形中,首先根据等边三角形的面积的求法,表示出3个三角形的面积;然后根据a2+b2=c2,可得S1+S2=S3(2)第二个图形中,
4、首先根据圆的面积的求法,表示出3个半圆的面积;然后根据a2+b2=c2,可得S1+S2=S3(3)第三个图形中,首先根据等腰直角三角形的面积的求法,表示出3个等腰直角三角形的面积;然后根据a2+b2=c2,可得S1+S2=S3(4)第四个图形中,首先根据正方形的面积的求法,表示出3个正方形的面积;然后根据a2+b2=c2,可得S1+S2=S3【解答】解:(1)S1=a2,S2=b2,S3=c2,a2+b2=c2,a2+b2=c2,S1+S2=S3(2)S1=a2,S2=b2,S3=c2,a2+b2=c2,a2+b2=c2,S1+S2=S3(3)S1=a2,S2=b2,S3=c2,a2+b2=c
5、2,a2+b2=c2,S1+S2=S3(4)S1=a2,S2=b2,S3=c2,a2+b2=c2,S1+S2=S3综上,可得面积关系满足S1+S2=S3图形有4个故选:D【点评】(1)此题主要考查了勾股定理的应用,要熟练掌握,解答此题的关键是要明确:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方(2)此题还考查了等腰直角三角形、等边三角形、圆以及正方形的面积的求法,要熟练掌握4(2016南京)下列长度的三条线段能组成钝角三角形的是()A3,4,4 B3,4,5 C3,4,6 D3,4,7【分析】在能够组成三角形的条件下,如果满足较小两边平方的和等于最大边的平方是直角三角形;
展开阅读全文