书签 分享 收藏 举报 版权申诉 / 4
上传文档赚钱

类型24.1.4圆周角1.doc

  • 上传人(卖家):欢乐马
  • 文档编号:284994
  • 上传时间:2020-02-23
  • 格式:DOC
  • 页数:4
  • 大小:1.16MB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《24.1.4圆周角1.doc》由用户(欢乐马)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    24.1 圆周角 下载 _九年级下册_人教版(2024)_数学_初中
    资源描述:

    1、 优秀领先 飞翔梦想 成人成才241.4圆周角1掌握圆周角定理及其推论并能应用其进行简单的计算与证明2掌握圆内接多边形的有关概念及性质3在探索过程中,体会观察、猜想的思维方法,在定理的证明过程中,体会化归和分类讨论的数学思想和归纳的方法一、情境导入你喜欢看足球比赛吗?你踢过足球吗?第十九届世界杯决赛于2014年在巴西举行,共有来自世界各地的32支球队参加赛事,共进行64场比赛决定冠军队伍比赛中如图所示,甲队员在圆心O处,乙队员在圆上C处,丙队员带球突破防守到圆上C处,依然把球传给了甲,你知道为什么吗?你能用数学知识解释一下吗?二、合作探究探究点一:圆周角定理 如图,AB是O的直径,C,D为圆上

    2、两点,AOC130,则D等于()A25B30C35D50解析:本题考查同弧所对圆周角与圆心角的关系AOC130,AOB180,BOC50,D25.故选A.探究点二:圆周角定理的推论【类型一】利用圆周角定理的推论求角 如图,在O中,A30,则B()A150 B75C60 D15解析:因为,根据“同弧或等弧所对的圆周角相等”得到BC,因为ABC180,所以A2B180,又因为A30,所以302B180,解得B75,故选B.方法总结:解题的关键是掌握在同圆或等圆中,相等的两条弧所对的圆周角也相等注意方程思想的应用 如图,BD是O的直径,CBD30,则A的度数为()A30 B45C60 D75解析:由

    3、BD是直径得BCD90.CBD30,BDC60.A与BDC是同弧所对的圆周角,ABDC60.故选C.【类型二】利用圆周角定理的推论求线段长 如图所示,点C在以AB为直径的O上,AB10cm,A30,则BC的长为_解析:由AB为O的直径得ACB90.在RtABC中,因为A30,所以BCAB105cm.【类型三】利用圆周角定理的推论进行有关证明 如图所示,已知ABC的顶点在O上,AD是ABC的高,AE是O的直径,求证:BAECAD.解析:连接BE构造RtABE,由AD是ABC的高得RtACD,要证BAECAD,只要证出它们的余角E与C相等,而E与C是同弧AB所对的圆周角证明:连接BE,AE是O的直

    4、径,ABE90,BAEE90.AD是ABC的高,ADC90,CADC90.,EC,BAEE90,CADC90,BAECAD.方法总结:涉及直径时,通常是利用“直径所对的圆周角是直角”来构造直角三角形,并借助直角三角形的性质来解决问题探究点三:圆的内接四边形及性质【类型一】利用圆的内接四边形的性质进行计算 如图,点A,B,C,D在O上,点O在D的内部,四边形OABC为平行四边形,则OADOCD_度解析:四边形ABCD是圆内接四边形,BADC180.四边形OABC为平行四边形,AOCB.又由题意可知AOC2ADC.ADC180360.连接OD,可得AOOD,COOD.OADODA,OCDODC.OADOCDODAODCD60.【类型二】利用圆的内接四边形的性质进行证明 如图,已知A,B,C,D是O上的四点,延长DC,AB相交于点E.若BCBE.求证:ADE是等腰三角形解析:由已知易得EBCE,由同角的补角相等,得ABCE,则EA.证明:BCBE,EBCE.四边形ABCD是圆内接四边形,ADCB180.BCEDCB180,ABCE.AE.ADDE.ADE是等腰三角形三、板书设计教学过程中,强调圆周角定理得出的理论依据,使学生熟练掌握并会学以致用在圆中,利用圆周定理及其推论求相关的角度时,注意辅助线的添加及多种可能情况的考虑. 第 4 页 共 4 页

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:24.1.4圆周角1.doc
    链接地址:https://www.163wenku.com/p-284994.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库