引力波测量原理课件.pptx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《引力波测量原理课件.pptx》由用户(晟晟文业)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 引力 测量 原理 课件
- 资源描述:
-
1、引力波测量原理以LIGO激光干涉法为例目录历史上著名的引力波测量实验引力波测量的难点激光干涉引力波天文台(LIGO) 美国马里兰大学韦伯在实验室建成了第一个引力波探测器。1969年韦伯公布了他们研究小组的实验数据“ 并宣称探测到了振幅达10-15,振幅在kHz频带的引力波。但韦伯的研究结果始终未能被重复验证“ 后来其他一些精度远高于韦伯棒的实验小组均未发现韦伯宣称的引力波信号。Tips: 该装置利用引力波的潮汐效应,由于天线内晶格间存在强弹性耦合力, 所以天线端面的振幅随入射引力波的频率变化而变化。当入射引力波的频率等于天线的本征频率时, 天线将在引力波的作用下发生共振。振动通过固定在天线上的
2、传感器变成电信号。 该实验装置是一个重1.4吨的铝棒,在垂直于圆柱轴线的对称截面上支承。著名引力波探测实验 1974年,Hulse和Taylor发现了第一颗射电脉冲双星PSR 1913+16。这个双星系统轨道周期的变化与引力波辐射损耗的预言相吻合,从而间接证明了引力波的存在。二人也因此获得1993年的Nobel物理学奖。Tips: 根据广义相对论,双星系统是一种旋转着的质量四极矩。它应能以辐射引力波的方式辐射能量。与所有束缚在一起的二体引力系统一样,其运行轨道周期将随着能量的辐射而减少。 要使这些天体产生的物理效应能被测量,至少应满足两个条件:轨道非常小(两子星足够近,以使广义相对论效应尽量明
3、显)有一种精度很高的轨道周期测量方法。 该双星的两子星的最大距离只有109m的量级(约一个太阳半径),其中一个子星为脉冲星,这一条件刚好能符合之前的条件。 引力波的振幅极小引力波探测难点 引力波与物质作用时引起的尺度变化极小。以LIGO激光干涉法为例,LIGO的光路长度为1120km,此次探测到的引力波无量纲振幅h10-21,依据公式L=Lh,引力波在经过LIGO探测器时引起的尺度变化约为10-18m数量级,这一尺寸只有质子直径(10-15m)的千分之一。事件类型到达地球的引力波无量纲振幅h双星系统10-34黑洞形成前10-31高速旋转的中子星(脉冲星)、致密天体被黑洞俘获10-2710-26
4、黑洞合并、大质量恒星遗骸合并10-2110-20超新星爆发(迄今为止人类观察到的最强引力波爆发)10-1610-17 引力波频率极低; 极低频率意味着引力波波长极长,故对特定频率引力波敏感的激光干涉测量设备,臂长(等效臂长)需要达到引力波波长的1/4才能进行有效的探测,以100Hz的引力波为例,其要求臂长至少达到750km。 宇宙中存在的引力波的频率分布如下图所示; 天体爆发形成的引力波源稀少 类似于黑洞合并、超新星爆发等天文现象虽然在整个宇宙中较为常见,但在人类可探测范围内的爆发事件即为有限,尤其是超新星爆发这类较强的引力波波源可能几十甚至上百年才能遇到一次。激光干涉引力波天文台(Laser
5、 Interferometer Gravitational-Wave Observatory, LIGO) 1991年,麻省理工学院与加州理工学院在美国国家科学基金会(NSF)的资助下,开始联合建设LIGO。 1999年11月建成,耗资3.65亿美元。 2005年-2007年,LIGO进行升级改造,升级后的LIGO被称为Advanced LIGO,简称aLIGO。 2015年,最新的激光干涉引力波天文台正式上线,其最敏感频率(100-300Hz)理论上,该天文台可以探测到3亿光年远的引力波事件。LIGO测量原理p引力波波源距离地球非常遥远,最近的也在百万光年以上,当引力波传播到地球附近时,已变
展开阅读全文