书签 分享 收藏 举报 版权申诉 / 3
上传文档赚钱

类型27.2.2 相似三角形的性质 (3).doc

  • 上传人(卖家):欢乐马
  • 文档编号:284854
  • 上传时间:2020-02-23
  • 格式:DOC
  • 页数:3
  • 大小:1.09MB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《27.2.2 相似三角形的性质 (3).doc》由用户(欢乐马)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    27.2.2 相似三角形的性质 3 27.2 相似 三角形 性质 下载 _九年级下册_人教版(2024)_数学_初中
    资源描述:

    1、优秀领先 飞翔梦想 成人成才27.2.2 相似三角形的性质 1理解相似三角形的性质;(重点)2会利用相似三角形的性质解决简单的问题(难点)一、情境导入两个三角形相似,除了对应边成比例、对应角相等之外,还可以得到许多有用的结论例如,在图中,ABC和ABC是两个相似三角形,相似比为k,其中AD、AD分别为BC、BC边上的高,那么AD、AD之间有什么关系?二、合作探究探究点一: 相似三角形的性质【类型一】 利用相似比求三角形的周长和面积 如图所示,平行四边形ABCD中,E是BC边上一点,且BEEC,BD、AE相交于F点(1)求BEF与AFD的周长之比;(2)若SBEF6cm2,求SAFD. 解析:利

    2、用相似三角形的对应边的比可以得到周长和面积之比,然后再进一步求解解:(1)在平行四边形ABCD中,ADBC,且ADBC,BEFAFD.又BEBC,BEF与AFD的周长之比为;(2)由(1)可知BEFDAF,且相似比为,()2,SAFD4SBEF4624cm2.方法总结:理解相似三角形的周长比等于相似比,面积比等于相似比的平方是解决问题的关键变式训练:见学练优本课时练习“课堂达标训练” 第4、6题【类型二】 利用相似三角形的周长或面积比求相似比 若ABCABC,其面积比为12,则ABC与ABC的相似比为()A12 B.2C14 D.1解析:ABCABC,其面积比为12,ABC与ABC的相似比为1

    3、2.故选B.方法总结:解决问题的关键是掌握相似三角形的面积比等于相似比的平方【类型三】 利用相似三角形的性质和判定进行计算 如图所示,在锐角三角形ABC中,AD,CE分别为BC,AB边上的高,ABC和BDE的面积分别为18和8,DE3,求AC边上的高解析:求AC边上的高,先将高线作出,由ABC的面积为18,求出AC的长,即可求出AC边上的高解:过点B作BFAC,垂足为点F.ADBC, CEAB,RtADBRtCEB,即,且ABCDBE,EBDCBA, ()2.又DE3,AC4.5.SABCACBF18, BF8.方法总结:解决此类问题,可利用相似三角形周长的比等于相似比、面积比等于相似比的平方

    4、来解答变式训练:见学练优本课时练习“课后巩固提升”第6题【类型四】 利用相似三角形线段的比等于相似比解决问题 如图所示,PNBC,ADBC交PN于E,交BC于D.(1)若APPB12,SABC18,求SAPN;(2)若SAPNS四边形PBCN12,求的值解析:(1)由相似三角形面积比等于对应边的平方比即可求解;(2)由APN与四边形PBCN的面积比可得APN与ABC的面积比,进而可得其对应边的比解:(1)因为PNBC,所以APNB,ANPC,APNABC,所以()2.因为APPB12,所以APAB13.又因为SABC18,所以()2,所以SAPN2;(2)因为PNBC,所以APEB,AEPAD

    5、B,所以APEABD,所以,()2()2.因为SAPNS四边形PBCN12,所以()2,所以.方法总结:利用相似三角形对应线段的比等于相似比可以推出相似三角形面积的比等于相似比的平方变式训练:见学练优本课时练习“课后巩固提升”第7题【类型五】 利用相似三角形的性质解决动点问题 如图,已知ABC中,AB5,BC3,AC4,PQAB,P点在AC上(与A、C不重合),Q点在BC上(1)当PQC的面积是四边形PABQ面积的时,求CP的长;(2)当PQC的周长与四边形PABQ的周长相等时,求CP的长解析:(1)由于PQAB,故PQCABC,当PQC的面积是四边形PABQ面积的时,CPQ与CAB的面积比为

    6、14,根据相似三角形的面积比等于相似比的平方,可求出CP的长;(2)由于PQCABC,根据相似三角形的性质,可用CP表示出PQ和CQ的长,进而可表示出AP、BQ的长根据CPQ和四边形PABQ的周长相等,可将相关的各边相加,即可求出CP的长解:(1)PQAB,PQCABC,SPQCS四边形PABQ,SPQCSABC14,CPCA2;(2)PQCABC,CQCP.同理可知PQCP,CPCQCPPQCQCPCPCP3CP,C四边形PABQPAABBQPQ(4CP)AB(3CQ)PQ4CP53CPCP12CP,12CP3CP,CP12,CP.方法总结:由相似三角形得出线段的比例关系,再根据线段的比例关系解决面积、线段的问题是解题的关键变式训练:见学练优本课时练习“课后巩固提升”第8题三、板书设计1相似三角形的对应角相等,对应边的比相等;2相似三角形(多边形)的周长的比等于相似比;相似三角形的对应线段(对应中线、对应角平分线、对应边上的高)的比也等于相似比;3相似三角形的面积的比等于相似比的平方 本节教学过程中,学生们都主动地参与了课堂活动,积极地交流探讨,发现的问题较多:相似三角形的周长比,面积比,相似比在书写时要注意对应关系,不对应时,计算结果正好相反;这两个性质使用的前提条件是相似三角形等等同学们讨论非常激烈,本节课堂教学取得了明显的效果. 第 3 页 共 3 页

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:27.2.2 相似三角形的性质 (3).doc
    链接地址:https://www.163wenku.com/p-284854.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库