13.4 课题学习 最短路径问题 (2).doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《13.4 课题学习 最短路径问题 (2).doc》由用户(欢乐马)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 13.4 课题学习 最短路径问题 2 课题 学习 路径 问题 下载 _九年级下册_(统编)部编版_语文_初中
- 资源描述:
-
1、 优秀领先 飞翔梦想 成人成才第十一章 三角形教学备注学生在课前完成自主学习部分1.问题引入(见幻灯片3)11.1 与三角形有关的线段11.1.1 三角形的边学习目标:1.能利用轴对称解决简单的最短路径问题. 2.体会图形的变化在解决最值问题中的作用,感悟转化思想重点:利用轴对称解决简单的最短路径问题难点:利用轴对称解决简单的最短路径问题自主学习一、知识链接1.如图,连接A、B两点的所有连线中,哪条最短?为什么?2.如图,点P是直线l外一点,点P与该直线l上各点连接的所有线段中,哪条最短?为什么?3.在我们前面的学习中,还有哪些涉及比较线段大小的基本事实?(1)三角形的三边关系:_; (2)直
2、角三角形中边的关系:_ .4.如图,如何作点A关于直线l的对称点?教学备注配套PPT讲授2.探究点1新知讲授(见幻灯片5-15)课堂探究1、 要点探究实际问题:如图,牧马人从点A地出发,到一条笔直的河边l饮马,然后到B地,牧马人到河边的什么地方饮马,可使所走的路径最短? 探究点1:牧人饮马问题 数学问题:如图,点A、B在直线l的同一侧,在直线l上求作一点C,使AC+BC最短. 想一想:1.现在假设点A,B分别是直线l异侧的两个点,如何在l上找到一个点,使得这个点到点A,点B的距离的和最短? 2.如果点A,B分别是直线l同侧的两个点,如何将点B“移”到l 的另一侧B处,满足直线l 上的任意一点C
3、,都保持CB 与CB的长度相等?要点归纳:(1)作点B 关于直线l 的对称点B;(2)连接AB,与直线l 相交于点C 则点C 即为所求如图所示. 你能用所学的知识证明你所作的点C使AC +BC最短吗? 证明:教学备注3.探究点2新知讲授(见幻灯片16-24)要点归纳:在解决牧人饮马问题时,通常利用轴对称,把未知问题转化为已解决的问题,从而做出最短路径的选择.典例精析例1:如图,已知点D、点E分别是等边三角形ABC中BC、AB边的中点,AD=5,点F是AD边上的动点,则BF+EF的最小值为()A7.5 B5 C4 D不能确定 方法总结:此类求线段和的最小值问题,找准对称点是关键,而后将求线段长的
4、和转化为求某一线段的长,而再根据已知条件求解.例2:如图,在直角坐标系中,点A,B的坐标分别为(1,4)和(3,0),点C是y轴上的一个动点,且A,B,C三点不在同一条直线上,当ABC的周长最小时点C的坐标是()A(0,3) B(0,2) C(0,1) D(0,0) 方法总结:求三角形周长的最小值,先确定动点所在的直线和固定点,而后作某一固定点关于动点所在直线的对称点,而后将其与另一固定点连线,连线与动点所在直线的交点即为三角形周长最小时动点的位置.探究点2:造桥选址问题实际问题:如图,A和B两地在一条河的两岸,现要在河上造一座桥MN.桥造在何处可使从A到B的路径AMNB最短(假定河的两岸是平
展开阅读全文