12.2 第3课时 “角边角”、“角角边”.doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《12.2 第3课时 “角边角”、“角角边”.doc》由用户(欢乐马)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 12.2 第3课时 “角边角”、“角角边” 课时 边角 角角边 下载 _九年级下册_(统编)部编版_语文_初中
- 资源描述:
-
1、 优秀领先 飞翔梦想 成人成才第十二章 全等三角形教学备注学生在课前完成自主学习部分 12.2 全等三角形的判定 第3课时 “角边角”和“角角边”学习目标:1.了解1.探索三角形全等的“角边角”和“角角边”的条件 2.应用“角边角”和“角角边”证明两个三角形全等,进而证线段或角相等.重点:已知两角一边的三角形全等探究.难点:理解,掌握三角形全等的条件:“ASA”“AAS”.自主学习一、知识链接1.能够 的两个三角形叫做全等三角形.2.判定两个三角形全等方法有哪些? 边边边: 对应相等的两个三角形全等.边角边: 和它们的 对应相等的两个三角形全等.二、新知预习1. 在三角形中,已知三个元素的四种
2、情况中,我们研究了三种,今天我们接着探究已知两角一边是否可以判断两三角形全等呢?三角形中已知两角一边又分成哪两种呢?2.现实情境 一张教学用的三角板硬纸不小心被撕坏了, 如图:你能制作一张与原来同样大小的新道具吗? 能恢复原来三角形的原貌吗?(1) 以为模板,画一画,能还原吗?(2) 以为模板,画一画,能还原吗?(3) 以为模板,画一画,能还原吗?(4) 第块中,三角形的边角六个元素中,固定不变的元素是_.猜想:两角及夹边对应相等的两个三角形_.三、我的疑惑_教学备注配套PPT讲授1.情景引入(见幻灯片3)2.探究点1新知讲授(见幻灯片4-9)课堂探究1、 要点探究探究点1:三角形全等的判定定
3、理3-“角边角”ABC活动:先任意画出一个ABC.再画一个ABC,使AB=AB,A=A,B=B.把画好的ABC剪下,放到ABC上,它们全等吗?你能得出什么结论? 要点归纳: 相等的两个三角形全等(简称“角边角”或“ASA”).几何语言:如图,在ABC和DEF中, ABCDEF.典例精析例1:如图,已知:ABCDCB,ACB DBC,求证:ABCDCB例2:如图,点D在AB上,点E在AC上,AB=AC, B=C,求证:AD=AE.方法总结:证明线段或角度相等,可先证两个三角形全等,利用对应边或对应角相等来解决.针对训练 如图,ADBC,BEDF,AECF,求证:ADFCBE. 探究点2:三角形全
展开阅读全文